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Abstract: The application of contemporary artificial intelligence techniques to address geometric
problems and automated deductive proofs has always been a grand challenge to the interdisciplinary
field of mathematics and artificial intelligence. This is the fourth article in a series of our works, in
our previous work, we established a geometric formalized system known as FormalGeo. Moreover,
we annotated approximately 7000 geometric problems, forming the FormalGeo7k dataset. Despite
the fact that FGPS (Formal Geometry Problem Solver) can achieve interpretable algebraic equation
solving and human-like deductive reasoning, it often experiences timeouts due to the complexity
of the search strategy. In this paper, we introduced FGeo-TP (theorem predictor), which utilizes
the language model to predict the theorem sequences for solving geometry problems. The encoder
and decoder components in the transformer architecture naturally establish a mapping between
the sequences and embedding vectors, exhibiting inherent symmetry. We compare the effectiveness
of various transformer architectures, such as BART or T5, in theorem prediction, and implement
pruning in the search process of FGPS, thereby improving its performance when solving geometry
problems. Our results demonstrate a significant increase in the problem-solving rate of the language
model-enhanced FGeo-TP on the FormalGeo7k dataset, rising from 39.7% to 80.86%. Furthermore,
FGeo-TP exhibits notable reductions in solution times and search steps across problems of varying
difficulty levels.

Keywords: geometry problem solving; the FormalGeo7k dataset; theorem prediction; transformer
architecture

1. Introduction

The utilization of computers to solve mathematical problems has long been an intrigu-
ing and highly challenging endeavor. With the continuous evolution of artificial intelligence
technology, various methods have emerged for solving mathematical problems across differ-
ent domains. This has led to the creation of solvers specifically designed for arithmetic [1],
algebraic [2–4], and theorem proving [5,6]. In this context, artificial intelligence plays a
significant role in computational optimization and strategy selection optimization, while
there has been relatively limited research on plane geometry problems, recent years have
witnessed the emergence of corresponding studies, such as inter-GPS [7], GeoQA [8], and
uniGEO [9]. These approaches have each introduced their own datasets and demonstrated
the solving capabilities of their solvers. However, these studies often suffer from some
flaws, such as opaque solver solving processes, lack of real-time interaction, and difficulty
in expanding the solving framework. In our previous research, FormalGeo [10], we de-
signed Formal Geometric Problem Solver (FGPS) and FormalGeo7k dataset to perfectly
solve these problems. The FGPS employs both forward and backward search methods with
various strategies for automated problem-solving. It is capable of executing traceable and
interpretable algebraic equation solving and relationship reasoning.
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The FormalGeo7k dataset comprises 6981 SAT-level geometry problems, each accom-
panied by a complete natural language description, geometric shapes, formal language
annotations, and theorem sequence annotations. Different from GeoQA and uniGEO,
inter-GPS annotates geometric images themselves, yet utilizes Euclidean coordinate anno-
tations, leading to the inability of reflecting the symmetry of the images in its annotations.
FormalGeo7K adopts the topological mapping method, describing the relative information
between points, which ensures that basic transformations, such as rotation or scaling of the
figures, do not affect the topological information of the figures themselves, thus preserving
their symmetry. One of the examples is illustrated in Figure 1. When annotated theorem
sequences are provided, FGPS can serve as an interactive assistant to help humans verify
the problem-solving process. In the absence of provided annotated theorem sequences,
FGPS can employ various heuristic search methods to solve problems autonomously.

As shown in the diagram, AC=x, 

AD=8, BD=y, ∠BCA=43°, CA is 

perpendicular to BA, DB⊥CB. 

Find the value of y.

Construction

    Shape(DB,BA,AD)

    Shape(AB,BC,CA)

    Collinear(DAC)

Condition    

    Equal(LengthOfLine(AC),x)

    Equal(LengthOfLine(AD),8)

    Equal(LengthOfLine(BD),y)

    Equal(MeasureOfAngle(BCA),43)

    PerpendicularBetweenLine(CA,BA)

    PerpendicularBetweenLine(DB,CB)

Theorem_Seqs

    adjacent_complementary_angle(1,CAB,BAD)

    triangle_property_angle_sum(1,DBA)

    triangle_property_angle_sum(1,DBC)

    sine_theorem(1,DBA)

Goal

    Value(y)

Problem_Answer 

    8/sin(43*pi/180)

Figure 1. An example from FormalGeo7k, including formal annotations. (The notation ‘43*pi/180’ is
a formal annotation for ‘43 × π

180 ’.)

Experiments conducted on the FormalGeo7k dataset indicate that FGPS achieved a
maximum solving rate of 39.7% with the forward random search method. Both forward and
backward search methods showed success rates of less than 40% in solving correct answers
within a limited time frame; however, this may not elicit excitement. To achieve true
artificial intelligence automated reasoning in solving plane geometry problems, auxiliary
measures are needed to enhance the speed and effectiveness of FGPS.

The provision or absence of theorem sequences significantly impacts the solving
efficacy of FGPS, prompting the urgent need for FGPS to generate theorem sequences
autonomously. Analogous to humans annotating theorem sequences after attempting to
comprehend geometric problems, we aspire for FGPS to emulate this process, discerning
the relationship between geometric problem information and theorem sequences. We
envision inputting geometric problem information and obtaining corresponding theorem
sequences, a concept closely resembling the sequence-to-sequence language model.

Inspired by existing works, we found that language models can effectively compre-
hend the annotations of geometric information in the FormalGeo7k dataset. In the dataset,
the formalized representation of geometric conditions takes the form of statements such
as “Equal(LengthOfLine(AD), 8)” indicating the length of line segment AD is 8. Our
formalization is easily comprehensible by both humans and computers. Therefore, we
propose integrating FGPS with language models, leveraging the inferential capabilities of
language models to train them in predicting theorem sequences required for geometric
problem-solving. Formalized condition sequences and predicted theorem sequences exhibit
a symmetrical input–output relationship, motivating our exploration of the transformer, an
encoder–decoder architecture characterized by inherent symmetry in language modeling.
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We employ various language models for the prediction and selection of the most effective
result among them, as the predicted theorem sequence to be incorporated into the FGPS
solving process. The specific approach involves predicting the theorems that may be re-
quired for a given geometric problem before FGPS initiates its theorem search. The solver
can execute the predicted theorems first, incorporating the conclusions obtained through
theorem execution into the set of conditions. This ensures a reduction in the steps and time
required for the solver to utilize the forward or backward search strategies.

In summary, our contributions are three-fold, as follows:

1. We introduce a groundbreaking approach that amalgamates FGPS with language
models, redefining the FGPS’ search process for plane geometry problem-solving;

2. Through the utilization of multiple language models, we have achieved unprece-
dented levels of theorem sequence prediction accuracy on the FormalGeo7k dataset;

3. The implementation of FGeo-TP (FGPS and theorem predictor) has led to a substantial
leap in problem-solving success rates, markedly diminishing the search time and
steps required—a testament to the efficacy of our method.

2. Related Work
2.1. Datasets for Geometry Problem Solving

In recent years, numerous exemplary planar geometry datasets have emerged. How-
ever, we contend that the formalization methods employed in these datasets lack uniformity.
This includes datasets such as Geometry3K [7], GeoQA, and PGDP5K [11]. Each of these
datasets employs distinct formalization methods for annotating geometric problem-solving.
Geometry3K annotates information in problem statements using both diagram formal
language and text formal language but does not provide annotations for solution infor-
mation. PGDP5K is designed to construct a formal language dataset through geometric
image analysis. However, these approaches lack concrete mathematical theoretical support,
leading to a deficiency in ensuring completeness. The GeoQA dataset encompasses nearly
5000 planar geometry problems, predominantly focused on numerical calculations involv-
ing angles and lengths. However, it lacks data related to geometric relationship proofs.
Moreover, the answer annotations in these datasets often manifest as multiple-choice
questions, introducing the possibility of solvers randomly selecting the correct answer.

In contrast, our FormalGeo7k dataset consists of 6981 SAT-level geometry problems,
further expanded to 186,832 through data augmentation. Each problem in the dataset
includes a comprehensive natural language description, geometric shapes, formal language
annotations, and theorem sequence annotations. Importantly, our dataset does not adopt a
multiple-choice question format but instead presents authentic planar geometry problems
akin to those encountered by secondary school students in routine assessments. The answer
types encompass numerical values, geometric relationships, and combinations thereof.

2.2. Geometry Problem Solving

The history of computer-aided geometric problem-solving can be traced back to the
previous century. Gelernter et al., employed a backward search method to address formal-
ized problems [12], and Nevins utilized the forward chaining method [13]. Search-based
methods often prove only a limited number of planar geometry theorems due to their high
computational complexity. Wen-Tsun proposed Wu’s Method [14], which transforms ge-
ometry problems into algebraic equation-solving problems but is confined to the algebraic
domain. Zhang introduced the point elimination method based on geometric invariants [15],
generating concise and meaningful readable proofs for a large number of geometry problems.
However, this method is restricted by the types of geometric invariant points.

In recent years, Seo et al., established the first automated system, Geos [16], which
translates the text and images of geometry problems into a logical language. However, its
high dependence on manually annotated rules limits its generalization. GeoQA transforms
the process of solving geometry problems into a sequence of programs composed of
variables and operators, resulting in problems with a lower readability compared to formal
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languages. Lu et al., proposed Inter-GPS, achieving high accuracy across multiple geometry
datasets. However, Inter-GPS is limited to numerical calculation problems and cannot
handle geometry relationship proofs.

In our prior work, FGPS can reason through all geometry problems in the FormalGeo7k
dataset, providing detailed solution processes. Specifically, for a given planar geometry
problem, FGPS can output a complete solution process, including the mathematical theo-
rems used in each step, which the conditions of the problem are involved in the theorem
application, and the new geometric conditions generated after applying the theorems.
FGPS can emulate the step-by-step problem-solving process as a secondary school stu-
dent approaching planar geometry problems. Moreover, FGPS is not limited to numerical
calculation problems and can effectively handle geometry relationship proof problems.

2.3. Pre-Training Model in NLP

In the field of natural language processing (NLP), pre-trained models play a crucial
role by enabling NLP models to achieve excellent performance without the need to train
from scratch. Instead, these models can undergo fine-tuning directly on the pre-trained
counterparts, streamlining the training process and yielding outstanding results [17,18]. In
the work of MWp-bert [19], pre-trained models were employed for solving mathematical
word problems. GeoQA+ [20] utilized pre-trained models to transform the textual informa-
tion of geometric problems, thereby augmenting the dataset. Inter-GPS used pre-trained
models to predict theorems; however, the Geometry3K dataset in Inter-GPS did not have
manually annotated theorem sequences required for solving problems. Instead, they were
randomly sampled, leading to potentially non-optimal theorem sequences. Furthermore, it
could only predict theorems for 1500 questions and not for all questions in the dataset.

The transformer [21] is a neural network model used for sequence-to-sequence [22]
learning, which classic encoder–decoder architecture has shown excellent results in NLP
tasks. Inspired by this success, we propose using the transformer architecture to compre-
hend the formal statements and predict the theorems required for geometric problem solvers.

The formalized conditional statements in FormalGeo7k’s geometry problems are easily
understandable, not completely detached from the computer’s comprehension of English
text. Since the transformer demonstrates remarkable effectiveness in understanding En-
glish text, we consider employing the encoder–decoder architecture of the transformer to
learn the relationship between conditional formalized statements and theorems. For the
seq2seq task, we conducted a comparative analysis of various language models to determine
their performance.

3. Geometry Problem Solver
3.1. FGPS

In our previous work [10], we implemented FGPS for the inference and solution of
all problems in the FormalGeo7k dataset. However, this was contingent on the annotated
theorem sequences provided in the FormalGeo7k dataset. When the solution theorem
sequence is not provided, FGPS resorts to using built-in methods to search for theorem
solutions. During the search process, FGPS constructs a search tree containing the sequence
of theorem applications for solving a given problem. We utilized both forward search
(FW) and backward search (BW) methods. FW starts from known conditions, continually
searching for available theorems to generate new conditions until the solving objective
is reached. In contrast, BW starts from the solving objective, decomposes it into multiple
sub-goals, and seeks the conditions required for each sub-goal, determining whether the
current sub-goal is solvable. This process repeats until all sub-goals are resolved.

Additionally, we employed the following four search strategies: breadth-first search
(BFS), depth-first search (DFS), random search (RS), and beam search (BS). BFS traverses
each node of the search tree in a level-wise manner, DFS recursively selects nodes from
shallow to deep, RS randomly selects nodes for expansion at each stage, and BS selects
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a specified number of nodes (K) at each expansion stage, striking a balance between
BFS and RS.

In cases where the search time exceeded 600 s, indicating a timeout for problem-
solving, the search results are presented in Table 1. Notably, the forward random search
method achieved the highest success rate of 39.7%, while the backward depth-first search
method exhibited the lowest unsolved rate of 2.42%. We observed that a substantial portion
of problem-solving tasks were not entirely unsolvable but rather failed due to prolonged
solving times, leading to timeout. Hence, there is a need for optimizations and pruning of
the FGPS solving process to achieve a higher success rate in problem-solving.

Table 1. The search results(%) of FGPS.

Method Strategy Solved Unsolved Timeout

FW BFS 38.86 7.42 53.72
FW DFS 36.16 9.80 54.05
FW RS 39.71 9.07 51.22
FW BS 25.28 38.72 36.00
BW BFS 35.44 2.68 61.88
BW DFS 33.73 2.42 63.84
BW RS 34.05 2.65 63.30
BW BS 34.39 12.86 52.74

The bold data indicates the best results in the search results of FGPS.

In line with the habitual problem-solving practices of humans, a high school student,
accustomed to regular problem-solving, typically skims through the problem conditions
when faced with a plane geometry question. With this initial scan, the student can often
make an approximate inference regarding the primary knowledge points being tested by
the question. Therefore, our aim is for FGPS to emulate this cognitive process. To achieve
this, we have incorporated a theorem predictor ahead of the solver in our methodology.
This modification enables FGPS to select more suitable theorems for application, rather
than attempting to utilize all available theorems.

3.2. FGeo-TP

FGPS experienced a high percentage of timeouts in searching the FormalGeo7k dataset,
primarily because, during the search process, each step involves exploring a large number
of theorems for potential matches. To optimize the solver’s solving process, we introduced
a theorem predictor. Before FGPS initiates the theorem search, the theorem predictor
guides FGPS, reducing the search complexity. The augmented FGPS, incorporating the
theorem predictor, is denoted as FGeo-TP (theorem predictor). The architecture of FGeo-TP
is illustrated in Figure 2.

In contrast to directly inputting the formalized language into FGPS, FGeo-TP requires
the formalized language to be simultaneously input into the theorem predictor. The
theorem predictor outputs the corresponding theorem sequence, and FGPS receives both
the formalized language and the predicted theorem sequence.

In the theorem predictor, we anticipate the input and output to be the formalized
language from FormalGeo7k and the required theorem sequence for each problem. As the
length of the formalized language and the theorems varies for each problem, a Seq2Seq
model is considered suitable. We opted to use the well-established transformer architecture
for implementing both the encoder and decoder.

The formalized conditional language in FormalGeo7k consists of geometric relation-
ship predicates, geometric form predicates, free variables, or numbers. This differs signifi-
cantly from popular natural language corpora in the field of natural language processing.
Therefore, pre-training the transformer model with our corpus is essential for the subse-
quent comprehension of formalized language by the model. To enhance readability, the
formalized geometric relationship and form predicates in FormalGeo7k are composed
of English words or concatenations of English words. This can be treated as word-level
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tokenization in the encoder, while free variables and numbers are considered character-
level tokenization. Hence, there is no need to update the existing vocabulary. Due to the
specificity of theorem names, a slight change in a single word may render FGPS unable to
recognize them. To prevent out-of-vocabulary situations in the decoder, we convert theo-
rem names into their corresponding numerical representations and represent the theorem
sequence as a one-dimensional array containing only integers.

Figure 2. The architecture of FGeo-TP.

We performed fine-tuning on the transformer pre-trained model using annotated
training and validation datasets. The fine-tuned model was then evaluated on the test set
to assess the prediction results. In fine-tuning tasks, the optimization was carried out using
the negative log-likelihood loss to refine the generated objectives.

Loss = − 1
N

N

∑
i=1

log P(yi|y1, . . . , yi−1, input) (1)

Here, N represents the length of the sequence, representing the number of theorems in the
target sequence. log P(yi|y1, . . . , yi−1, input) represents the conditional probability of predicting
theorem yi given the historical predictions y1, . . . , yi−1 and the input formalized language.

To achieve higher matching degrees, we employed beam search, selecting the union of
multiple theorem sequences with higher probabilities to enhance the degree of matching.

Bn = argtopk
y1,...,yn−1,yn

[P(yn|y1, . . . , yn−1, input)] (2)

Bn represents the set of the top k predicted theorem sequences when predicting the
next theorem. Each predicted theorem sequence has the form [y1, . . . , yn−1, yn], where yn is
the theorem added in that step. The input is the formalized geometry problem conditions.
This process continues until the predefined sequence length is reached or an end token
is encountered. In the experiments, we set the maximum sequence length to 20, and the
number of top predicted theorem sequences is 5.

Stp = Bn1 ∪ Bn2 ∪ . . . ∪ Bnk (3)

Stp represents the final predicted theorem sequence, while Bn1 , Bn2 , . . . , Bnk denotes
the set of the top-k predicted theorem sequences when the last theorem prediction is
completed. The experimental findings indicate that even when merging multiple predicted
theorem sequences, the final predicted theorem sequence’s length does not experience a
significant increase.
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After FGeo-TP executes the predicted theorem sequence, the conclusions are deduced
based on the original problem conditions. We integrate these conclusions with the initial
problem conditions to form a new set of conditions. If the problem-solving objective is still
unresolved with this updated set, FGeo-TP employs a search method based on the new
condition set to identify a solution. FGPS demonstrates a quick use of the theorem, thus, the
use of predicted theorem sequences by FGeo-TP does not impose a significant burden on
reasoning. On the contrary, it can reduce FGPS’ search for subsequent theorems. Through
these steps, our objective is to streamline the solver’s search process and implement pruning
in the solver’s solving procedure.

4. Experiment
4.1. Description of the Dataset

The FormalGeo7k dataset is aggregated from diverse sources, including Geometry3K,
GeoQA, GeoQA+, and online repositories, which consists of 6981 SAT-level geometry
problems. We meticulously curated, classified, deduplicated, and standardized the problem
statements. Creating the FormalGeo7k dataset was a substantial undertaking, which
involved approximately 16 trained master’s students over a period of around 13 weeks.

Furthermore, the construction of the FormalGeo7k dataset is guided by studies in
geometry ontology and geometry representation theory. These methodologies address
questions regarding what content should be formalized and how it should be formalized.
The dataset includes geometric shapes, formal language annotations, and theorem sequence
annotations for each problem. The theorems involve relational reasoning, logical opera-
tions, and algebraic calculations. Therefore, the FormalGeo7k dataset encompasses all the
information and problem-solving processes for planar geometry problems. Specific data
examples can be referred to in Figure 1. For specific construction methods, please refer to
FormalGeo [10].

The sound construction methods enable the theorem predictor to effectively learn the
relationship between formal language and theorems. For example, if a formal statement
contains both “perpendicular” and the lengths of sides, the theorem predictor may predict
the “Pythagorean theorem”. The theorem predictor’s prediction of theorems is not limited
to specific conditions within the individual problems but rather encompasses the learning
of relationships between geometric knowledge and theorems, endowing it with generaliza-
tion capabilities.

4.2. Theorem Sequence Prediction

We utilized data from the FormalGeo7k dataset for training purposes. Initially, we
randomly shuffled the 6981 geometry problems, allocating them to training, validation, and
test sets in a ratio of 0.7:0.15:0.15. Furthermore, the training epochs were set to 20, with an
initial learning rate of 3× 10−5. The loss function employed was the negative log-likelihood
loss, and the optimizer used was Adam. For the theorem prediction model, we attempted
to compare various pre-trained language models based on the transformer architecture.

It is worth noting that our initial experiments did not directly assess the problem-
solving effectiveness of FGeo-TP. Instead, we began by evaluating the accuracy of predicting
theorems for various pre-trained language models. After trying out numerous transformer
pre-trained models, we eventually settled on BART and T5. BART [23] and T5 [24] are
both excellent transformer architecture models, with BART being particularly suitable
for sequence generation tasks, and T5 having greater versatility due to its “Text-to-Text”
approach. BART-base utilizes a 6-layer encoder and decoder, while BART-large uses
12 layers. Beside that, mT5 [25] builds upon T5 by incorporating training data from a more
diverse range of languages, whereas FLan-T5 [26] fine-tunes the instructions on top of T5
to achieve “One Model for All Tasks”. FLan-T5-base employs a 12-layer encoder–decoder
architecture, while FLan-T5-large utilizes a 24-layer architecture.

We trained the models using formal language annotations and theorem sequences an-
notations from the FormalGeo7k dataset as input and output, respectively. We recorded the
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matching accuracy between the predicted theorem sequences and the annotated theorem
sequences. We define the matching degree as the ratio of the accurately predicted theorems
in the predicted sequence to the number of theorems required for the problem. For instance,
if a problem’s theorem sequence includes 10 theorems and the predicted theorem sequence
contains 8 of them, we consider the sequence matching degree to be 80%. Furthermore,
ultimately, we obtained experimental results as shown in Table 2.

Table 2. Prediction matching degree.

Model Average (%) Complete (%)

mT5 33.73 17.51
FLAN-T5-base 59.37 33.59
FLAN-T5-large 74.61 55.22

BART-base 86.29 70.77
BART-large 84.16 67.33

Where “average” represents the average matching degree of predicted theorem se-
quences for all questions. When the matching degree is 100% (i.e., the predicted theorem
sequence contains all the theorems required for that question), we consider the question
solved with complete theorem sequence prediction, denoted as prediction complete. The
“complete” in the table signifies the percentage of questions with a predicted matching
degree of 100% in the FormalGeo7k dataset.

According to the experimental results, we observed that, for the FormalGeo7k dataset,
the BART-base pre-trained model performs the best. Of course, both BART-large and T5-large
also exhibit good predictive performance. Since our ultimate goal is to integrate the predicted
theorem sequences into FGPS to achieve the best problem-solving results, we choose to use
the BART-base pre-trained model in the solver’s solving process. This aims to explore the true
problem-solving rate for the FormalGeo7k dataset.

4.3. Experimental Results of FGeo-TP

Our experimental setup comprised 2 Intel i9-10900X, 1 AMD Ryzen 9 5900X, and 1
AMD Ryzen 9 7950X(The Intel processors were sourced from Intel Corporation, Santa Clara,
California, USA. The AMD processors were sourced from Advanced Micro Devices, Inc.,
Sunnyvale, California, USA.). The maximum search depth for the search algorithm was set
to 15, with a beam size of 20, and a timeout of 600 s for each problem. The entire experiment
lasted approximately one day under multi-process handling. For the solving methods and
strategies employed by FGeo-TP, we employed both the FW and BW methods, as well as
the BFS, DFS, RS, and BS search strategies. Table 3 presents the solving rates, unsolved
rates, and timeout rates of these methods on the FormalGeo7k dataset.

Table 3. The search results (%) for FGeo-TP.

Method Strategy Solved Unsolved Timeout

FW BFS 68.16 1.96 29.88
FW DFS 67.36 1.87 30.76
FW RS 68.76 2.01 29.23
FW BS 60.06 4.40 35.54
BW BFS 80.12 1.81 18.07
BW DFS 79.55 2.14 18.31
BW RS 80.86 1.78 17.36
BW BS 79.06 2.23 18.71

The bold data indicates the best results in the search results of FGeo-TP.

The experimental results reveal that FGeo-TP achieves a maximum solving rate of
80.86%, doubling the average solving rate compared to FGPS. Additionally, the maximum
unsolved rate is only 4.4%. Based on these results, we can confidently assert that FGeo-TP
exhibits a significant potential for solving geometric problems.
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From the table, it is evident that FGeo-TP generally exhibits a higher solved rate in the
backward search method compared to the forward search. However, in the case of FGPS,
the solving results show the opposite situation. This discrepancy arises because, in the
backward search method, each update of the final goal state is accompanied by updates
to multiple child node states, consuming considerable time. When FGeo-TP provides
new reasoning conditions, it significantly reduces the backward search process, thereby
decreasing the timeout rate and improving the solving rate. For the forward search, the
expansion of the initial condition set leads to an expansion of theorem selection paths,
resulting in less optimization in areas with higher time complexity.

At the same time, we observe that the solving rate of FGeo-TP is lower than the
matching degree of the theorem predictor for theorem sequences. Upon comparing the
predicted theorem sequences with the actual solving theorem sequences, we find differences
in the theorem order and the quantity of theorem uses. In geometric problem-solving,
the same theorems with different usage orders may lead to different outcomes in solution
success. Similarly, a question may require the repeated use of a particular theorem, while the
theorem predictor only predicts whether this theorem should be used without considering
the frequency of use. Therefore, there is still room for improvement in the theorem predictor,
and FGeo-TP may achieve even better solving performance.

4.4. Solving Time and Step

Based on the required length of theorem sequences for problem resolution, we have cat-
egorized the questions in FormalGeo7k into the following difficulty levels: l1 (length ≤ 2),
l2 (3 ≤ length ≤ 4), l3 (5 ≤ length ≤ 6), l4 (7 ≤ length ≤ 8), l5 (9 ≤ length ≤ 10), and l6
(length ≥ 11). The corresponding quantities of questions for each difficulty level are 2407,
1898, 1247, 824, 313, and 292, respectively. To investigate whether FGeo-TP optimizes the
search space based on FGPS problem-solving, we compared the solving time and solution
steps of the two for problems of varying difficulty levels. The experimental results on
FormalGeo7k are illustrated in Figures 3 and 4. The detailed data can be found in the
Appendix A.

Figure 3. Solving time at different difficulty levels.
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Figure 4. Solving step at different difficulty levels.

From the figure, it is evident that, both in terms of solving time and solution steps,
FGeo-TP exhibits a superior performance compared to FGPS across the majority of difficulty
levels for the given problems. Regarding the solving time, FGPS exhibits randomness
due to its reliance on unstable searches. In contrast, FGeo-TP, with the integration of
theorem prediction, bases its subsequent search space on the given theorems. Consequently,
the relationship between solving time and problem difficulty aligns more closely with
human problem-solving behavior, reducing the overall average solving time to a quarter of
the original.

Under the guidance of theorem prediction, FGeo-TP rapidly identifies the direction
for problem-solving, exhibiting significantly fewer solution steps than FGPS, especially
in lower difficulty problems. However, as the complexity of the problems increases, the
length of the necessary theorem sequences for solving these problems also extends, leading
to a gradual weakening in the effectiveness of theorem prediction. This decline can be
attributed to the following two main factors: Firstly, with the rise in problem difficulty,
the search space for solutions grows exponentially, outpacing the rate at which theorem
prediction can reduce this search space. Secondly, as the theorem sequences become longer,
the accuracy of the theorem prediction decreases, consequently diminishing its utility in
problem-solving.

4.5. The Combined Approach of FGeo-TP and FGPS

In the analysis of the problem-solving results using FGeo-TP, unexpected phenomena
were observed. For certain problems, FGeo-TP failed to yield a solution, while the original
FGPS successfully solved them. Consequently, additional experiments were conducted.
Building upon FGeo-TP, a hybrid approach was employed, where, in case of timeouts, the
search strategy was switched back to FGPS. The experimental outcomes, derived from the
collaborative problem-solving efforts of FGeo-TP and FGPS, are presented in Table 4.

Table 4. The average solving results(%) for FGeo-TP and the combined approach of FGeo-TP
and FGPS.

Method FW BW

Strategy BFS DFS RS BS BFS DFS RS BS

FGeo-TP 68.16 67.36 68.76 60.06 80.12 79.55 80.86 79.06
FGeo-TP+FGPS 71.56 72.14 73.48 65.07 81.09 80.67 81.86 80.41
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Based on the experimental results, it is observed that, for the forward search , the
combined approach of FGeo-TP and FGPS leads to an average improvement in the problem-
solving rate of approximately 3–5% compared to FGeo-TP alone. Similarly, for the backward
search, the combined FGeo-TP and FGPS approach yields an average improvement in the
problem-solving rate of around 1% compared to FGeo-TP alone. Further investigation was
conducted to explore this anomalous phenomenon.

After comparing a considerable amount of experimental data, we identified the under-
lying reasons for the observed outcomes. The initial condition set of FGPS consists of the
formal language annotations annotated in FormalGeo7k. These annotations include infor-
mation provided by the problem statement, typically in limited quantity. Consequently,
when FGPS selects a search path, it matches the available theorems based on the current
condition set, placing feasible theorem sequences in a queue. Various search strategies will
select different theorems from the queue for application. After applying a theorem, new
conditions are obtained, and adding these conditions to the condition set generates a new
condition set. The new set can once again match a batch of available theorem sequences,
which are subsequently added to the previous theorem sequences.

Therefore, we observe that if FGeo-TP predicts the inclusion of non-essential theorems,
the initial condition set may contain unnecessary conditions. This results in the generation
of unnecessary condition sequences, diluting the probability of the solver selecting the
correct theorem sequence. This significantly increases the prediction time, leading to
timeouts. However, BFS is not affected by the addition of new theorems and continues to
run the initially matched theorem sequences, ensuring that the desired theorems will be
executed. From the experimental results of the combined approach of FGeo-TP and FGPS,
it is evident that only the FW method and BFS strategy shows a modest improvement of
3%, while the other three strategies show an improvement of around 5%. This observation
indicates that BFS is less influenced by redundant theorems. In the backward search,
the effectiveness of the combined approach of FGeo-TP and FGPS has shown a modest
improvement of 1% compared to using FGeo-TP alone. The possible reason for this is the
introduction of unnecessary conditions, leading to an increase in the redundant algebraic
equations during the solving process. Consequently, excessive and futile computations
occur during equation solving, resulting in extended computation time and timeouts.

5. Correlation Analysis

In the previous analysis, we primarily focused on comparing the solving rates and
solving times of FGeo-TP and FGPS on the dataset, revealing the superiority of FGeo-TP.
However, besides these straightforward comparisons, we aimed to uncover the subtle rela-
tionships that might not be immediately apparent. We hypothesize that different strategies
may influence the timeout rates of FGeo-TP solutions. However, intuitively discerning the
relationship between timeout rates and different strategies can prove challenging. There-
fore, we sought a method to ascertain the correlation or independence between timeout
rates and strategies, leading us to opt for the chi-square test [27].

The chi-square test is a statistical method used to determine whether the observed
data deviates significantly from the expected data, allowing for the rejection of the null
hypothesis. Initially, we need to conduct the following hypothesis test: Null Hypothesis
(H0): The strategy is independent of the timeout rate. Alternative Hypothesis (H1): There is
a relationship between the strategy and the timeout rate. we organized the raw number data
from Table 3 into a 4 × 2 contingency table. The first column represents the proportions
of non-timeouts (both solved and unsolved), while the second column represents the
proportions of timeouts, as illustrated in Table 5.

To proceed, we computed the expected frequency matrix using the formula:

Eij =
Ri × Cj

N
(4)
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where Eij denotes the expected frequency at the intersection of the i-th row and j-th column,
Ri represents the total for the i-th row (row sum), Cj represents the total for the j-th column
(column sum), and N is the total sum of all values in the table (i.e., the sum of all row and
column totals).

Table 5. The number of search results for FGeo-TP.

Strategy Non-Timeout Timeout

BFS 10,614 3348
DFS 10,536 3426
RS 10,710 3252
BS 10,175 3787

After obtaining the expected frequency matrix, we proceeded to calculate the chi-
square statistic using the formula:

χ2 = ∑
i,j

(Oij − Eij)
2

Eij
(5)

where Oij denotes the observed frequency at the intersection of the i-th row and j-th
column, Eij denotes the expected frequency for the i-th row and j-th column under the
null hypothesis, and the summation symbol ∑ indicates summation over all rows i and
columns j.

Finally, we determined the degrees of freedom using the formula:

d f = (r − 1)× (c − 1) (6)

r and c, respectively, represent the number of rows and columns in the contingency table.
Using the data from Table 5 and Equations (4)–(6), we derive the chi-square statistic

yield is 62.99 and the degrees of freedom is 3. Consulting the chi-square distribution critical
values table, at a significance level of α = 0.05, consulting the table yields a critical value of
7.815. Since the chi-square statistic (62.99) is greater than the critical value (7.815), we reject
the null hypothesis and accept the alternative hypothesis. Therefore, at the significance
level of 0.05, there is sufficient evidence to support the association between the strategy
and the timeout rate, which also validates our hypothesis.

6. Conclusions

We combined a language model with FGPS to enhance the automatic problem-solving
capability for plane geometry problems. Initially, we experimented with multiple pre-
trained language models and selected the BART-base as the optimal model due to its
high theorem sequence prediction match rate of 86.29%. Subsequently, we integrated the
theorem predictor into the FGPS solving process, resulting in the development of FGeo-TP.
The experimental results indicate that FGeo-TP achieves a problem-solving success rate
of 80.86% on the FormalGeo7k dataset, surpassing the solving rate of using FGPS alone
by more than twice. Moreover, FGeo-TP’s problem-solving process rapidly identifies the
direction of solution, significantly reducing the number of problem-solving steps, and
cutting the average problem-solving time to a quarter of the original. However, for real-
time data, we still require manual annotation of the problems before the system can solve
them. Additionally, the current version of FGeo-TP does not perform well in predicting
the theorem solutions for more challenging geometry problems such as IMO questions.
Currently, we are exploring the automated problem annotation methods and will refine the
dataset for IMO-level geometry problems in the future.
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Appendix A

Table A1. Experimental results.

Solver Metric Method Strategy Total l1 l2 l3 l4 l5 l6

* FGPS

time(s)

FW BFS 185.05 121.97 205.51 333.33 331.26 243.92 251.11
FW DFS 132.35 84.11 158.91 254.29 196.02 230.39 218.05
FW RS 92.21 57.38 89.55 177.34 189.74 166.96 199.31
FW BS 58.76 35.11 81.52 106.92 207.55 191.40 121.36
BW BFS 57.67 30.00 94.97 152.26 147.55 193.21 134.65
BW DFS 46.45 26.34 81.17 115.83 94.85 133.23 0.85
BW RS 65.82 42.79 101.71 156.27 145.50 202.37 3.37
BW BS 75.55 47.16 121.17 172.50 165.80 207.28 146.26

step

FW BFS 58.44 21.85 68.67 119.56 144.80 161.44 822.18
FW DFS 87.16 33.15 95.95 225.57 232.25 257.59 727.17
FW RS 41.89 19.14 47.63 64.32 108.26 143.41 611.00
FW BS 18.64 10.99 25.97 37.86 46.19 48.44 541.00
BW BFS 15.14 20.68 4.80 5.60 2.31 1.00 1.00
BW DFS 5.17 4.96 5.83 5.86 3.94 1.00 1.00
BW RS 4.34 5.02 3.13 2.81 1.27 1.00 1.00
BW BS 1.67 1.49 1.94 3.08 1.25 1.00 1.00

FGeo-TP

time(s)

FW BFS 32.10 19.83 36.51 40.11 50.05 58.05 72.76
FW DFS 38.62 24.70 43.55 49.30 54.06 70.34 93.30
FW RS 33.19 19.39 37.00 45.57 51.79 46.86 83.45
FW BS 49.67 35.55 57.56 54.53 77.04 72.71 120.13
BW BFS 9.44 4.99 8.63 12.14 20.27 32.75 30.29
BW DFS 9.59 4.74 8.96 11.74 19.46 30.07 37.99
BW RS 6.08 2.34 5.91 8.43 11.78 25.65 15.91
BW BS 7.28 4.46 7.48 8.71 11.10 25.18 15.65

step

FW BFS 8.90 2.07 10.27 7.61 13.87 9.68 175.24
FW DFS 15.10 3.88 10.81 14.12 23.63 40.62 340.67
FW RS 8.83 2.23 6.25 7.55 24.76 11.13 160.41
FW BS 2.69 1.74 2.87 3.04 4.84 4.39 12.98
BW BFS 0.39 0.04 0.29 0.63 0.88 1.99 3.88
BW DFS 1.05 2.21 0.23 0.22 0.16 0.66 0.15
BW RS 0.30 0.03 0.41 0.51 0.47 1.41 0.20
BW BS 0.10 0.03 0.12 0.14 0.15 0.33 0.34

* The experimental data for FGPS is derived from the FormalGeo [10].

https://arXiv.org/abs/2402.09047
https://arXiv.org/abs/2402.09047
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