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Abstract: Plane geometry problem solving has been a long-term challenge in mathematical
reasoning and symbolic artificial intelligence. With the continued advancement of auto-
mated methods, the need for large-scale datasets and rigorous evaluation frameworks has
become increasingly critical for benchmarking and guiding system development. However,
existing resources often lack sufficient scale, systematic difficulty modeling, and quantifi-
able, process-based evaluation metrics. To address these limitations, we propose FGeo-Eval,
a comprehensive evaluation system for plane geometry problem solving, and introduce the
FormalGeo30K dataset, an extended dataset derived from FormalGeo7K. The evaluation
system includes a problem completion rate metric PCR to assess partial progress, theorem
weight computation to quantify knowledge importance, and a difficulty coefficient based
on reasoning complexity. By analyzing problem structures and solution dependencies,
this system enables fine-grained difficulty stratification and objective performance mea-
surement. Concurrently, FormalGeo30K expands the dataset to 30,540 formally annotated
problems, supporting more robust model training and evaluation. Experimental results
demonstrate that the proposed metrics effectively evaluate problem difficulty and assess
solver capabilities. With the augmented dataset, the average success rate across all difficulty
levels for the FGeo-HyperGNet model increases from 77.43% to 85.01%, while the average
PCR increases from 88.57% to 91.79%. These contributions provide essential infrastructure
for advancing plane geometry reasoning systems, offering standardized benchmarks for
model development and guiding optimization of geometry-solving models.

Keywords: evaluation system; geometry problem solving; the FormalGeo30K dataset;
symmetry in solution hypergraph

1. Introduction
Solving plane geometry problems has long been recognized as a fundamental chal-

lenge in the fields of mathematical reasoning and artificial intelligence [1]. This task
involves transforming multimodal geometric information into structured knowledge rep-
resentations, which is followed by the application of logical reasoning, theorem-based
inference, and symbolic computation to derive the intended conclusions. The challenges
of this process lie in both the complexity of multimodal problem representation and the
intricacies of geometric knowledge structures, which require the use of formal methods to
transform textual descriptions, diagrams, and algebraic relations into computable logical
representations. Moreover, it requires the accurate prediction of a sequence of applicable
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theorems and the execution of corresponding deductive reasoning and algebraic computa-
tions, which ultimately produce solutions that are interpretable, traceable, and verifiable.
Traditional approaches to automated geometry problem solving largely rely on manually
defined theorems and inference rules, including search-based strategies [2,3], coordinate-
based algebraic methods such as Wu’s method [4], and point elimination techniques based
on geometric invariants [5]. Although these methods can solve certain classes of geometry
problems, they suffer from notable limitations in problem representation, search efficiency,
and scalability to large datasets.

Recent advances in deep learning have motivated a growing body of research that
seeks to integrate neural architectures with formal reasoning frameworks, leading to the
development of neural-symbolic geometry solvers such as Inter-GPS [6], NGS [7], and Al-
phaGeometry [8]. These approaches typically employ large-scale training for theorem
prediction and proof path selection and have shown promising results. However, most
existing work focuses on optimizing model architectures and search strategies, with limited
attention to the representation and structural modeling of geometric problems. To address
these limitations, we introduce FormalGeo [9], a system grounded in geometric formaliza-
tion theory, which provides a unified representation framework for structured expression
and logical reasoning in geometry problems. FormalGeo encodes geometric conditions
and goals using a formal language, supporting the structured modeling and execution of
reasoning paths, which enhances the traceability and interpretability of the solution process.
In addition, the system captures structural symmetries inherent in geometric reasoning,
such as compositional symmetry in figure construction, topological symmetry in theo-
rem dependency graphs, and mirror symmetry between forward and backward inference
strategies. These symmetries offer valuable potential to simplify reasoning, expand data,
and inform algorithm design.

However, automated geometry problem solving still faces three major challenges.
First, current evaluation systems heavily rely on the overall solution accuracy, which lacks
quantitative metrics for assessing the completeness and interpretability of the reasoning
process. Second, the difficulty stratification of problems often depends on human intuition
without an objective framework grounded in theorem complexity and inference depth.
Third, existing datasets remain limited in both scale and diversity, which constrains model
generalization and limits the comparability and applicability of research findings.

To address these issues, we propose FGeo-Eval, a comprehensive evaluation frame-
work for geometry problems, which was developed on the basis of the FormalGeo system.
FGeo-Eval introduces a dual-perspective evaluation scheme. On the one hand, it defines a
problem completion rate metric PCR to assess whether the key reasoning paths required
to solve a problem have been sufficiently explored, thereby overcoming the limitations
of single-metric overall accuracy evaluation. On the other hand, it establishes a problem
difficulty stratification system based on the structure of theorem usage and inference depth,
enabling an objective assessment of problem complexity that supports data augmentation
and model evaluation. Building on this foundation, we further construct the FormalGeo30K
dataset. This dataset extends the original FormalGeo7K through a systematic augmentation
process that leverages structural symmetries in reasoning paths and patterns in theorem
usage. In addition to significantly increasing the number of problems, it enhances the
diversity of geometric structures, difficulty levels, and reasoning complexities, providing a
more representative benchmark for the training and evaluation of neural-symbolic models.

In summary, the main contributions of this work are as follows:

1. We propose a completion-based evaluation metric, Problem Completion Rate PCR,
to quantitatively assess the logical completeness and intermediate progress of reason-
ing paths in geometry problem solving;
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2. We develop a multi-dimensional difficulty assessment framework based on theorem
complexity, reasoning depth, and usage frequency, enabling automatic and inter-
pretable stratification of geometric problems;

3. We construct FormalGeo30K, a high-quality and large-scale dataset to support large-
scale model training and evaluation;

4. We integrate the proposed evaluation mechanisms into symbolic reasoning systems,
providing technical foundations for fine-grained analysis, performance diagnosis,
and robustness improvement in automated geometry solvers.

2. Related Work
The field of plane geometric problem solving and theorem proving has evolved over

decades, transitioning from early search-based synthetic methods and coordinate-based
algebraic methods to modern neuro-symbolic systems that integrate deep learning and
formal mathematical reasoning. This section systematically reviews these methods and
their representative research.

Early efforts in geometric theorem proving relied on logical reasoning and search
strategies. In 1959, Gelernter et al. [2] proposed the first geometry theorem prover, which
utilized a backward chaining strategy reasoning from the goal backward to generate sub-
goals until matching the given premises. Subsequently, Zhang Jingzhong et al. [3] proposed
a geometric information search system by forward reasoning, which enhanced theorem-
proving efficiency through structured data organization and optimized reasoning processes.
Nevertheless, traditional search methods (e.g., forward chaining [10] and backward chain-
ing [2]) are still limited by inefficiency, incompleteness, and dependence on manually
defined rules, especially in complex geometric constructions and auxiliary line generation.

Among coordinate-based algebraic methods, the most representative is Wu’s method [4],
an efficient algebraic approach specifically designed for elementary geometric problems.
This method introduces coordinate systems to transform the premises and conclusions of
geometric theorems into algebraic equations and inequalities, which are proven through
algebraic manipulations. Wu’s method was further extended to geometry over finite
fields [11], differential geometry [12], and certain geometric problems involving inequali-
ties [13]. It gradually evolved into a general mathematical mechanization method centered
on solving polynomial equations. Notable extensions include polynomial elimination
methods incorporating Gröbner bases [14], numerical parallel [15], triangular elimination
for polynomial systems [16] and Dimension-reduction algorithms for automated proof of
algebraic inequalities [17]. However, proofs generated by such algebraic methods rely on
intricate polynomial computations that lack geometric intuitiveness and present significant
challenges in rigorously verifying their correctness.

The point elimination method based on geometric invariants [5] establishes connec-
tions between given conditions and target conclusions by utilizing geometric invariants and
introducing auxiliary points. Through algebraic operations or geometric transformations,
it progressively eliminates these auxiliary points, ultimately converting the elimination
process into reasoning steps, thereby generating human-readable proofs. This method
originated from Zhang’s systematic area method and subsequent introduction of addi-
tional geometric invariants such as Pythagorean differences [18], vectors [19], and full
angles [20], enhanced its capability to solve a broader range of plane geometry problems.
Later, the fundamental principles of this method were further extended to applications
in solid geometry [21] and non-Euclidean geometry [22]. Compared to algebraic meth-
ods that suffer from intermediate expression explosion during symbolic computations,
the point elimination method employs more meaningful representations through geometric
invariants, which improves the readability of proofs and reduces computational complex-
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ity. However, the difficulty in defining appropriate geometric invariants and establishing
robust point elimination principles has constrained its broader application.

With the advancement of machine learning techniques and optimization theory, some
studies have begun developing systems capable of automated geometric problem parsing
and solving. Representative works in this domain include GEOS [23], GEOS++ [24], GEO-
OS [25], and GeoShader [26]. Beyond geometric problem solving, research has also focused
on geometric theorem proving [27,28], geometric problem formalization [29,30], and geo-
metric knowledge extraction [31]. However, these methods still rely heavily on manually
defined rules, such as using human-annotated symbols as intermediate representations for
problem parsing, and their applicability is inherently restricted to specific problem types,
which fundamentally limits generalizability.

In recent years, with the advancement of deep learning technologies, the integration
of deep learning and symbolic reasoning has become mainstream, leading to the pro-
posal of various data-driven neuro-symbolic automated problem-solving systems based
on deep learning and formal mathematics. These methods can be categorized into two
types: deductive database (DD) methods [6,8,32] and program sequence generation (PSG)
methods [7,33]. DD methods focus on parsing problem texts and diagrams into formal
languages and solving problems by applying theorems. This approach requires manually
defined theorem libraries and translating symbolic reasoning and algebraic computation
processes into computer programs. Essentially, deductive database approaches represent
implementations of synthetic methods combined with modern AI techniques, with repre-
sentative researches including Inter-GPS [6], GeoDRL [34], AlphaGeometry [8], E-GPS [35],
FGeo-TP [32], FGeo-DRL [36], and TongGeometry [37]. PSG methods encode the texts and
diagrams of geometric problems into unified representations, feed these encodings into
decoders to generate program sequences, and then execute these sequences to derive solu-
tions. These methods essentially transform geometric problem solving into sequence gener-
ation tasks, with representative approaches including NGS [7], S2G [33], Geoformer [38],
DPE [39], SCA-GPS [40], UniMath [41], Dual-GeoSolver [42], GOLD [43], and LANS [44].
Beyond geometric problem-solving tasks, geometric problem parsing [45,46] and auto-
mated formalization [47] have also attracted researchers’ attention.

3. FGeo-Eval
In the FormalGeo framework for automated plane geometry problem solving, the sys-

tem comprises five core modules: the Formal Geometry Problem Solver (FGPS) [48], FGeo-
Parser [46], FGeo-TP (Theorem Prover) [32], FGeo-DRL (Deep Reinforcement Learning) [36],
and FGeo-HyperGNet (Hypergraph Neural Network) [49]. As the central solving engine,
FGPS can automatically solve plane geometry problems in our defined formal language
by executing theorem sequences provided by a theorem predictor. FGeo-Parser functions
as an upper-level multimodal analysis module, transforming natural language problem
descriptions and geometric diagrams into standardized formal language representations.
Theorem prediction is addressed through three different approaches: FGeo-TP leverages
pretrained language models, FGeo-DRL formulates theorem selection as a reinforcement
learning task, and FGeo-HyperGNet incorporates hypergraph-based structural learning.
Despite their architectural diversity, all these approaches rely primarily on the overall
problem-solving success rate as the core evaluation metric.

However, this single-metric evaluation oversimplifies the assessment of solver perfor-
mance, failing to capture the logical completeness and intermediate progress within the
reasoning process. To address these limitations, we propose FGeo-Eval, a comprehensive
evaluation system featuring two key advancements: a problem completion evaluation
metric and a difficulty stratification framework. The problem completion evaluation metric
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quantifies the solver’s progress by reconstructing reasoning dependencies and converting
binary success/failure metrics into continuous-valued completion metrics. The difficulty
stratification framework establishes a hierarchical difficulty model by quantifying the
difficulty of theorems based on application frequency. This system not only provides
multidimensional quantitative benchmarks but also drives collaborative optimization
across modules through feedback mechanisms derived from process evaluation and diffi-
culty stratification. Ultimately, it establishes a self-improvement cycle of problem parsing,
theorem prediction, solution verification, and iterative evaluation, ensuring continuous
refinement of the automated problem-solving framework.

3.1. Problem Completion Rate Metric

Current performance evaluations of automated geometric reasoning solvers predom-
inantly rely on two metrics: overall accuracy and step-wise accuracy. However, these
metrics quantify problem-solving outcomes through binary success judgments or step
counts, which oversimplify the evaluation process and fail to capture critical dynamic
process characteristics such as the effectiveness of theorem applications and the progressive
achievement of subgoals during reasoning. To address these limitations, we propose the
Problem Completion Rate metric PCR based on the solution hypertree of problems. The core
mechanism involves reverse traversal of the problem solution hypertree to quantify phased
subgoal attainment.

We adopt the solution hypertree structure for PCR design, as it more effectively
captures the structural complexity of geometric reasoning than alternative representations
such as dependency trees, general graphs, or sequential theorem sequences. Dependency
trees, while effective for modeling single-path inference, are inadequate for representing
the multi-premise dependencies common in geometric theorems. General graphs provide
structural flexibility but lack the hierarchical organization and acyclicity necessary for
representing coherent proof paths, thereby complicating backtracking and evaluation.
Sequential theorem sequences impose a rigid linear order that fails to capture the inherently
branched and concurrent nature of geometric deduction. In contrast, hypertrees naturally
support multi-premise reasoning through hyperedges and preserve a topological structure
that enables efficient reverse tracing of reasoning paths. These structural advantages make
hypertrees particularly suited for modeling proof structures and supporting metrics like
PCR that depend on logical dependencies and subgoal tracking.

Accordingly, we represent the geometric problem-solving process as a directed hy-
pergraph consisting of condition hypernodes and theorem hyperedges, as illustrated in
Figure 1. The root node corresponds to the initial condition set, the target node represents
the geometric proposition to be solved, and intermediate nodes denote the derived condi-
tions generated through theorem applications. When the solver fails to directly deduce the
target node, the system initiates reverse dependency path traversal from the target node to
identify the first critical theorem hyperedge whose output hypernode remains uncovered
by the solver’s conclusions. The input hypernodes of this theorem (its premise conditions)
are iteratively validated as new subgoals, and the theorem itself is added to the unpredicted
theorem set. This backtracking process continues recursively until subgoals match either
the solver’s intermediate conclusions or initial conditions, thereby constructing the maxi-
mal unresolved path from the target node to uncovered intermediate properties. Therefore,
the incompletion rate of a problem is defined as the proportion of the unpredicted theorem
set relative to the required theorem set, which is calculated through the aforementioned
process. Consequently, the quantified completion metric is formulated as follows:

PCR = 1− |U||T | (1)



Symmetry 2025, 17, 902 6 of 19

where T denotes the complete theorem set required for problem resolution, U ⊆ T rep-
resents the uncovered theorem set that the solver fails to predict, and | · | denotes set
cardinality. The complete algorithm is described in Algorithm 1. Our proposed evaluation
metric employs a reverse backtracking mechanism to trace dependencies from the final
target to achieved subgoals by analyzing the topological dependencies within the solu-
tion hypertree. Existing metrics such as success rate, step accuracy, partial credit scoring,
and tree edit distance have notable limitations. Success rate reduces evaluation to a binary
judgment; step accuracy neglects logical dependencies between inference steps; partial
credit scoring relies on manual rubrics, limiting scalability and overlooking cascading
errors; and tree edit distance, while capturing structural similarity, lacks robustness to
multiple valid solution paths and fails to reveal unresolved subgoals. In contrast, PCR
transforms the binary solved/unsolved paradigm into a continuous, phase-based evalua-
tion of subgoal completion, enhancing interpretability and providing targeted optimization
insights while ensuring objectivity and reproducibility. This metric offers a fine-grained
analytical tool for the performance evaluation of geometric reasoning systems. Further-
more, it facilitates data-driven algorithm iteration (prioritizing the prediction capability
for frequently missing steps), thereby advancing automated reasoning models in terms of
logical rigor and interpretability.

Case 2: As shown in the diagram, KJ	= 11, ∠JKL= 65°,	K is the center of ⊙K. Find the area of the sector KJL.

Equal(AreaOfSector(KJL), 7139*pi/72)

Equal(MeasureOfArc(KJL), 295)
Equal(AreaOfSector(KJL),Mul(MeasureOfArc(KJL), 
RadiusOfCircle(K), RadiusOfCircle(K), 1/360*pi)) Equal(RadiusOfCircle(K),11)

Equal(LengthOfLine(KJ),RadiusOfCircle(K))Equal(MeasureOfArc(KJL), MeasureOfAngle(LKJ))Equal(MeasureOfAngle(LKJ), 295)

Equal(MeasureOfAngle(JKL), 65) Equal(Add(MeasureOfAngle(JKL),
MeasureOfAngle(LKJ)),360)

round_angle(JKL,LKJ)

Angle(JKL) Angle(LKJ)

Cocircular(K, JL) Line(KJ)IsCentreOfCircle(K, K)

Equal(LengthOfLine(KJ),11)

solve_eq

solve_eq

solve_eq

solve_eq radius_of_circle_property_length_equal(1,KJ,K)sector_area_formula(1,KJL)

arc_property_center_angle(1,KJL,K)

1)

Case 1: As shown in the diagram, AB=30, CD=30, ∠XCZ=40°, X is the center of circle X, AM⊥YM, 
DN is perpendicular to ZN. Find the measure of arc XBA.

vertical_angle(1,CNX,DNZ)

congruent_arc_judgment_chord_equal(1,XCD,XBA)

circle_property_chord_perpendicular_bisect_arc(1,XCD,XNZ) similar_arc_property_measure_ratio(1,XCZ,XCD)

congruent_arc_property_measure_equal(1,XCD,XBA)

solve_eq

similar_arc_judgment_cocircular(1,XCZ,XCD)

similar_arc_property_length_ratio(1,XCZ,XCD) arc_addition_length(1,XCZ,XZD)

Equal(MeasureOfArc(XBA), 80)

Equal(MeasureOfArc(XCZ), 40)

Equal(LengthOfArc(XC
Z), LengthOfArc(XZD))

Equal(LengthOfArc(XCD),Add(Len
gthOfArc(XCZ),LengthOfArc(XZD)))

Equal(MeasureOfAngle(CNX),90)

Collinear(XNZ) Collinear(CND)

IsCentreOfCircle(X,X) Cocircular(X,ACZDBY)

Equal(LengthOfArc(XCZ),Mul(LengthOfA
rc(XCD), RatioOfSimilarArc(XCD,XCZ)))

SimilarBetweenArc(XCZ,XCD)

Equal(MeasureOfArc(XCZ),Mul(MeasureOf
Arc(XCD), RatioOfSimilarArc(XCD,XCZ)))

Equal(MeasureOfArc(XB
A),MeasureOfArc(XCD))

CongruentBetweenArc(XCD,XBA)

Equal(LengthOfLine(AB), 30)Collinear(AMB) Equal(LengthOfLine(CD), 30)Equal(MeasureOfAngle(CNX), 
MeasureOfAngle(DNZ))

solve_eq

Equal(MeasureOfAngle(DNZ),90)

PerpendicularBetweenLine(DN,ZN)

extended

Angle(DNZ)Angle(CNX)

Unpredicted Theorem
congruent_arc_property_measure_equal(1,XCD,XBA)

similar_arc_property_measure_ratio(1,XCZ,XCD)

similar_arc_judgment_cocircular(1,XCZ,XCD)

similar_arc_property_length_ratio(1,XCZ,XCD)

arc_addition_length(1,XCZ,XZD)

circle_property_chord_perpendicular_bisect_arc(1,XCD,XNZ)']

Problem Completion Rate = 0.25

Overall Accuracy = 0

Problem Completion Rate = 1

Overall Accuracy = 0

Figure 1. Two cases for calculating completion rate in solution hypertree.
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Algorithm 1 Problem Completion Rate PCR Calculation

Input: derived_set: a set of derived hypernodes, hypertree_gt: ground truth hypertree,
theorem_seqs: required theorem sequence for problem solving.
Output: completion_rate: problem-solving completion rate PCR.
Initialize theorem_needed as an empty set for unpredicted and needed theorem
sub_goals← hypertree_gt.target_node
while sub_goals is not empty do

current_goal ← sub_goals.pop()
if current_goal ∈ derived_set then

continue
end if
(parent_theorem, premise_nodes)← get_dependencies(hypertree_gt, current_goal)
if parent_theorem ∈ theorem_seqs then

theorem_needed.add(parent_theorem)
end if
for node ∈ premise_nodes do

sub_goals.append(node)
end for

end while
complete_rate← 1− (len(theorem_needed)/len(theorem_seqs))
return complete_rate, theorem_needed

Although PCR yields continuous values, it is not intended as a prediction target for
the model. Instead, it functions as a post-hoc evaluation metric designed to measure the
effectiveness of predicted theorem sequences from a classification-based reasoning model
when executed by the solver. Our model is trained to generate sequences of theorems
required to solve geometry problems rather than to directly regress to a scalar score such
as PCR. Nonetheless, PCR is highly compatible with classification outputs: higher PCR
scores are strongly associated with higher prediction accuracy and more complete solutions.
Moreover, its continuous nature enables finer-grained assessment compared to binary
metrics, offering greater interpretability and diagnostic value. This reflects the scoring logic
adopted by human experts. For example, in mathematical proof evaluation, partial credit
is awarded for correctly establishing intermediate results, which is similar to how PCR
evaluates partially completed reasoning chains within the hypertree.

It is also important to emphasize that continuous metrics are commonly employed
in classification tasks. Metrics such as accuracy, precision, recall, and F1-score all produce
continuous values, even though they are used to evaluate discrete classification outcomes.
Therefore, the continuous nature of PCR does not suggest a regression-based task formula-
tion. Predicting PCR values directly would be inappropriate, as the model is not designed
to estimate evaluation scores but to identify the set of applicable theorems that can lead
to a valid solution. Accordingly, PCR is deliberately designed as an external, task-specific
metric for evaluating solution quality in a manner that is both rigorous and consistent with
human evaluative practices.

3.2. Problem Difficulty Stratification System

We propose a hierarchical framework for assessing the difficulty of geometric problems
by modeling theorem application patterns. The core innovation is the translation of formal
reasoning steps into measurable feature representations, which establishes a fine-grained
evaluation benchmark for plane geometry problem-solving systems. The framework
comprises four key components:
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1. Modeling Theorem Usage Frequency Distribution: We conduct a comprehensive
statistical analysis of theorem sequences across all solution paths in the FormalGeo7K
dataset to model the distribution of theorem usage frequency

2. Assigning Cognitive Complexity Weights: By applying logarithmic transformation
and range normalization, raw frequencies are nonlinearly mapped to the interval
[1.0, 2.0] to generate weight coefficients that reflect the cognitive complexity of theo-
rems. High-frequency fundamental theorems are assigned lower weights, whereas
low-frequency advanced theorems receive higher weights.

3. Defining Problem Difficulty Scores: We define problem difficulty scores as a cumula-
tive function of theorem weights, where the initial application of a theorem contributes
its base weight, and repeated applications incur progressive penalties, increasing by
0.1 with each recurrence. This penalty mechanism accounts for the cognitive load ac-
cumulation effect in complex reasoning processes. The precise formula for calculating
the difficulty score D is as follows:

D = ∑(αi × βi) + 0.1× (βi − 1)

where αi denotes the weight of theorem i, and βi represents the number of times
theorem i appears, with βi ≥ 1.

4. Establishing a Hierarchical Difficulty Classification: Based on the distribution of
difficulty scores across 7000 problems in the FormalGeo7K dataset, as illustrated in
Figure 2, we classify problems into the following six progressive difficulty levels: Level
1 (D < 2.5), Level 2 (2.5 ≤ D < 4.5), Level 3 (4.5 ≤ D < 6.0), Level 4 (6.0 ≤ D < 8.0),
Level 5 (8.0 ≤ D < 10.0), Level 6 (10.0 ≤ D). This classification framework provides a
graduated scale of problem complexity, progressing from foundational skills at Level
1 to sophisticated logical reasoning at Level 6.
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Figure 2. The difficulty coefficient distribution in FormalGeo7K.

While the FormalGeo7K dataset covers curricula from grades 6 to 12, our difficulty
stratification is derived solely from the statistical distribution of computed difficulty scores
without attempting to align with specific school grade levels. Although this stratification is
derived from partitioning the computed difficulty score distribution shown in Figure 2, it
serves a practical and effective role in establishing a balanced and interpretable classification
system. In the absence of a universally recognized theoretical framework for quantifying the
difficulty of geometric problems, our empirical strategy enables broad yet representative
coverage of varying problem complexities. This approach is consistent with common
practices in data-driven educational assessment, where difficulty levels are typically defined
according to score distributions rather than strict theoretical boundaries.
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By systematically quantifying theorem diversity, application frequency, and com-
binatorial complexity, our framework provides a structured benchmark for evaluating
geometric problem-solving models at a fine-grained level. Analyzing model performance
across different difficulty levels allows us to identify key bottlenecks, such as challenges in
complex logical reasoning and multi-theorem integration, thereby facilitating the iterative
advancement of neuro-symbolic reasoning techniques.

4. FormalGeo7K and FormalGeo30K Datasets
In recent years, significant progress has been made in the field of automated plane

geometry problem solving. However, current datasets still exhibit notable limitations,
including restricted scale, incomplete annotations, and inconsistencies in formalization
standards. For instance, GeoQA [7] and Geometry3K [6] primarily focus on annotating
multiple-choice or short-text problems while lacking systematic records of theorem applica-
tion sequences; PGDP5K [50] specializes in geometric diagram parsing, primarily providing
annotations for diagrams and symbols while lacking corresponding textual descriptions or
problem statements; PGPS9K [51] demonstrates strong performance in program synthesis
tasks but has limited compatibility in its formal annotation framework, constraining its
adaptability to multimodal reasoning; UniGeo [38] seeks to unify geometric representa-
tions, yet it still requires further refinement in clearly delineating problem conditions from
reasoning paths. To address these limitations, we introduce the FormalGeo7K [46] dataset
and its extended version, FormalGeo30K, which combine manual annotation, scalable gen-
eration, and rigorous validation to establish a structured, comprehensive, and meticulously
annotated benchmark for automated geometric reasoning research.

4.1. Description

The FormalGeo7K dataset serves as a foundational benchmark for plane geome-
try problems, comprising 7000 geometry problems selected from Geometry3K [6] and
GeoQA+ [39]. These problems have been re-annotated using the FormalGeo formalization
framework to ensure a structured and comprehensive representation. This annotation
process standardizes problem statements and diagrams, integrates formalized annota-
tions in the FormalGeo language, and records the theorem sequences used in the solution,
thereby establishing a comprehensive problem data framework. Specifically, we adopted
a rule-based approach to standardize problem statements in both English and Chinese
and utilized the geometric drawing tools provided by GeoGebra to reconstruct problem
diagrams. This not only ensures consistency between text and diagram representations but
also enhances diagram diversity by embedding relevant textual information directly into
the illustrations. For formalized annotations, our FormalGeo system adopts the Conditional
Declaration Language (CDL) to represent geometric problem conditions and objectives,
which are further categorized into Construction CDL (defining the topological relationships
between geometric elements), Image CDL (capturing implicit conditions from diagrams),
Text CDL (extracting conditions from problem statements), and Goal CDL (symbolizing
the problem-solving objective). This categorization enables a structured and complete
representation of problems in formal language. Additionally, each problem file includes a
fully annotated theorem sequence that explicitly records the logical reasoning path from
the given premises to the target conclusion, thereby enhancing the interpretability of the
problem-solving process. To ensure the correctness and necessity of theorem usage, all
problems underwent syntactic validation and theorem redundancy pruning through the
FGPS framework, resulting in a syntactically rigorous and logically precise dataset.

The annotation of FormalGeo7K was carried out collaboratively by fourteen rigor-
ously trained graduate students, totaling approximately 1500 annotation hours through
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systematic cross-validation procedures. In summary, the unified formalization framework
of FormalGeo7K mitigates annotation fragmentation in existing datasets while establishing
a traceable logical foundation for automated plane geometry problem solving. Further-
more, it supports diverse reasoning tasks, including theorem prediction, problem solving,
and diagram parsing, serving as a comprehensive benchmark for training and evaluating
geometric reasoning models in complex scenarios.

To overcome the scale limitations of current geometric datasets, we propose the Formal-
Geo30K dataset as an extended version of FormalGeo7K. Building upon the Construction
Description Language framework of FormalGeo7K, the FormalGeo30K dataset achieves a
significant scale expansion to 30,540 problems through a theorem-driven dynamic genera-
tion framework combined with a multi-stage validation mechanism, thereby enhancing
the diversity and hierarchical complexity of problem distributions. The expansion process
comprises three key phases:

• Goal Generation: Through theorem-guided inference or random search strategies, we
dynamically apply geometric theorems to generate two types of extended objectives:
(1) Logical goals(proof-oriented), which focus on verifying geometric relationships,
where Relation represents qualitative properties such as parallelism and perpen-
dicularity (e.g., Relation(ParallelBetweenLine(AB, CD)) for parallelism), while
Equal imposes geometric equivalence constraints (e.g., Equal(LengthOfLine(AB),
LengthOfLine(AC)) for length equality). (2) Algebraic goals(calculation-oriented),
which target numerical resolution, where Value represents symbolic value solving
(e.g., Value(LengthOfLine(AB) for the length of line AB)).

• Path Validation: By tracing back the theorem dependencies in the original solution
path, we extract high-order theorem nodes to construct the derived theorem sequence
for the extended problem. The logical coherence and acyclicity of the theorem sequence
are rigorously validated through a directed acyclic graph (DAG), with redundant
branches pruned to ensure solution uniqueness and reasoning consistency.

• Difficulty Stratification: Using the FGeo-Eval system, we calculate a difficulty coef-
ficient for each extended problem. This metric is then applied to filter the extended
problems, constrain the number of extensions per original problem, and stratify the
overall dataset into distinct difficulty levels.

The FormalGeo30K dataset offers four key advantages that address critical challenges
in automated geometric reasoning research. First, enhanced diversity is achieved through
the proposed expansion method, which generates two types of problem objectives for
calculation and proof that cover a wide range of reasoning scenarios, including geometric
relationship verification and geometric attribute value computation. Second, logical rigor
is enforced through the DAG verification mechanism, ensuring that every problem has a
reproducible and well-structured theorem derivation path. Third, interpretability is prior-
itized by retaining complete constructive descriptions and explicit theorem dependency
graphs, enabling fine-grained analysis of reasoning processes. Finally, balanced difficulty
distribution is achieved through adaptive thresholding, ensuring a gradual transition
from basic to advanced problem complexities. Through its large-scale goal generation
and structured validation framework, FormalGeo30K establishes a benchmark that pri-
oritizes both scalability and quality, offering robust support for research in automated
geometric reasoning.

4.2. Statistics

The FormalGeo30K dataset comprises 30,540 plane geometry problems, partitioned
into training, validation, and test sets in a ratio of 0.6:0.2:0.2, with difficulty levels corre-
sponding to middle school curricula from grades 6 to 12. The dataset is systematically
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categorized into two distinct problem types: calculation problems, which emphasize nu-
merical derivation and symbolic computation (e.g., calculating angles, segment lengths,
and ratio constraints) and account for 65.9% (20,147 problems); and proof problems, which
emphasize logical reasoning and the construction of formal theorem sequences (e.g., ge-
ometric relationship inference) and account for 34.1% (10,393 problems). Both problem
types are annotated using a unified formalization framework, ensuring broad applicability
across different geometric reasoning tasks.

For difficulty stratification, the FormalGeo30K dataset’s difficulty coefficient distribution,
derived from the FGeo-Eval evaluation system, is shown in Figure 3. The figure illustrates
both the overall difficulty distribution and the difficulty distributions for problems targeting
the predicates Relation, Value, and Equal, respectively. Statistical analysis reveals that
calculation problems, as indicated by the predicate Value, demonstrate higher average dif-
ficulty coefficients, yet they still conform to the overall difficulty distribution of the dataset.
Among these, the problems corresponding to MeasureOfAngle and LengthOfLine, which
represent calculations of angles and line lengths, account for the largest proportion of com-
putational problems, at 49.4% and 31.4%, respectively. This pattern is similarly reflected in
a subset of proof problems denoted by the predicate Equal, with proportions of 44.5% and
33.9%, respectively. In contrast, for problems concerning the properties and relationships of
geometric entities represented by the predicate Relation, the inherent complexity of geomet-
ric relationships leads to a more diverse distribution of problem types. Notably, the proof
problems corresponding to the predicate RightTriangle for right-triangle determination
and the predicate PerpendicularBetweenLine for proving parallel relationships account for
relatively high proportions, at 16.8% and 16.1%, respectively.
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Figure 3. The difficulty coefficient distribution in different kinds of problems in FormalGeo30K.

Through the detailed statistical analysis and difficulty stratification of the Formal-
Geo30K dataset, it is evident that the dataset maintains a well-structured and balanced
distribution of problem types. As a standardized and scalable benchmark, it provides
substantial support for research in the field of automated geometric reasoning and plays a
crucial role in advancing formal solution methods for plane geometry problems.
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5. Experiment
In this section, we conduct experiments to validate the proposed evaluation system for

plane geometry theorem prediction and solving. Specifically, we integrate multiple models
with a unified symbolic solver in a consistent experimental setup and systematically explore
three key questions: (1) the effectiveness of Completion Rate as the primary evaluation
metric, (2) the relationship between the proposed problem difficulty coefficients, intrinsic
complexity, and solving efficiency, and (3) the impact of scaling the FormalGeo30K dataset
on model generalization.

5.1. Experimental Settings

All experiments were conducted on the FormalGeo7K and FormalGeo30K datasets,
both containing formal condition annotations, theorem sequences, and other relevant
information, with FormalGeo30K representing a larger-scale extension of FormalGeo7K.
Each dataset was split into training, validation, and test sets in a 3:1:1 ratio, and all experi-
ments were conducted in a unified environment equipped with an NVIDIA GeForce RTX
4090 GPU.

To support the multi-dimensional comparative evaluation of the proposed metrics, we
assessed three theorem prediction models integrated with the FormalGeo framework’s sym-
bolic solver (FGPS): FGeo-HyperGNet (a neural-symbolic model), BART-base, and T5-small
(both serving as generative baselines). FGeo-HyperGNet, the core model in the FormalGeo
framework, employs a Transformer architecture without residual connections to encode hy-
pergraphs representing geometric conditions. It utilizes a hypergraph serialization strategy
to capture structural relationships, applies a task-specific attention mechanism to assign
selection probabilities to candidate theorems, and generates proof paths via beam or greedy
beam search. The model was trained using the Adam optimizer with a learning rate of
1× 10−5 and a batch size of 64 for 50 epochs.

For comparison, we also fine-tuned two Transformer-based pretrained models: BART-
base (as used in FGeo-TP) and T5-small (based on the Text-to-Text framework). Both models
were optimized with cross-entropy loss and the Adam optimizer, using a learning rate of
3× 10−5, trained for 50 epochs, with a maximum sequence length of 30. During decoding,
each model produced 40 candidate sequences via beam search, from which the top 20
were retained. All predicted theorem sequences were submitted to the unified FGPS solver
for final problem resolution, with a timeout threshold of 600 seconds to ensure consistent
experimental conditions.

5.2. Effectiveness of Problem Completion Rate

To validate the effectiveness of the proposed Problem Completion Rate metric PCR, we
conducted a systematic evaluation of the three aforementioned models: FGeo-HyperGNet
using GB and NB strategies, respectively, BART-base, and T5-small. All of them were
paired with the FGPS solver, and we compared PCR with other mainstream performance
metrics. Table 1 presents each model’s average solving time, overall PCR, and overall
accuracy(success rate). For problems that were not fully solved, it provides a breakdown
by failure type (Timeout and Unsolved), reporting the corresponding overall PCR and the
number of instances in each category. Figure 4 illustrates the trends of PCR and overall
accuracy across different difficulty levels for all models.

The experimental results demonstrate a high consistency between PCR and overall
accuracy in terms of model ranking, confirming PCR’s effectiveness in evaluating overall
problem-solving capability. Furthermore, PCR consistently exceeds overall accuracy, indi-
cating its ability to offer finer-grained feedback between partially completed and completely
failed solutions. For example, although BART-base achieves an overall accuracy of 61.43%,
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its PCR reaches 78.08%, suggesting that many unsuccessful cases still contain substantial
correct reasoning. HyperGNet-GB leads all models with a PCR of 94.15%, highlighting
its strong advantage in reasoning completeness. As shown in Figure 4, both PCR and
overall accuracy decline as problem difficulty increases, but the drop in PCR is noticeably
smaller—especially for harder problems—demonstrating its ability to capture partial rea-
soning retained by the models. These findings indicate that PCR not only complements
the success rate by addressing its evaluation blind spots but also provides unique value in
assessing the completeness of reasoning processes.

Table 1. Experimental results in FormalGeo7K.

Method Strategy Avg Time PCR Success Rate
Timeout Unsolved

PCR Count PCR Count

T5-small NB 30.31 71.06 53.71 22.62 29 38.17 619
BART-base NB 21.24 78.08 61.43 19.42 17 43.94 523
HyperGNet NB 28.55 83.07 69.64 42.93 32 44.33 393
HyperGNet GB 107.33 94.15 88.64 48.29 158 80.00 1

The beam size for methods involving beam search is 5.
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Figure 4. PCR and overall accuracy at different difficulty levels.

Further analysis of Table 1 shows that, compared with the other models, HyperGNet-
GB dramatically reduces the number of unsolved instances, approaching zero. However,
it exhibits a notably higher count of timeout cases. An examination of these models’
predicted outputs reveals that all theorem prediction models generate parameter-free
templates without specific entity bindings. During execution with the FGPS solver, this
design forces the system to enumerate a large number of entity combinations for each
theorem invocation to identify valid matches. This substantially increases the solving time
and may cause theorem instantiations to be overlooked, ultimately resulting in timeouts
or failures. This issue is particularly pronounced in HyperGNet-GB due to its higher
overall coverage and denser theorem invocation patterns, which exacerbate the efficiency
bottleneck caused by the lack of parameterization. To address this problem, we recommend
introducing an explicit entity argument prediction mechanism during theorem prediction.
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By generating theorems with bound entities directly, the model can reduce enumeration
overhead, lower timeout risks, and narrow the gap between PCR and overall success rate.

To further quantify the consistency between PCR and the traditional success rate, we
conducted a statistical analysis using the prediction results of the HyperGNet-GB model on
the FormalGeo7K test set. The results showed a strong positive correlation between the two
metrics: the Pearson correlation coefficient was 0.852, the Spearman coefficient was 0.973,
and the coefficient of determination from linear regression was R2 = 0.725. These figures
indicate a high degree of alignment in their overall trends, demonstrating that both metrics
can effectively reflect the relative problem-solving performance of the model. However, it
is worth noting that the two metrics are not entirely consistent. In certain instances, PCR is
markedly higher than the success rate, which reveals its capacity to identify cases where
the reasoning process was substantially completed even though a final answer was not
generated. These are nuances that the traditional success rate does not capture.

Furthermore, PCR can reveal model deficiencies that the traditional success rate fails to
detect. In our experiments, we observed that for some unsolved problems, the completion
rate reached 1, indicating that the theorem sequence had been fully predicted. However,
due to the absence of algebraic operations, the model was unable to produce a final solution,
resulting in a success rate of 0. The example shown in Figure 1 case 2 illustrates a scenario
where the reasoning steps were present, but the problem was not actually solved. This
issue does not stem from the theorem prediction module but rather from limitations within
the algebraic reasoning component of the FGPS solver. These findings demonstrate that
PCR is sensitive to internal deficiencies in the solving process and can help identify system
bottlenecks and guide subsequent optimizations.

In summary, PCR not only maintains a strong correlation with success rate at the
macro level but also reveals underlying issues in the problem-solving process at a more
granular level. As a result, it serves as an effective and necessary procedural evaluation
metric, playing a significant role in advancing automated systems for plane geometry
problem solving.

5.3. Reliability of the Difficulty Coefficient

Because the FormalGeo7K dataset used in our study does not include human-
annotated difficulty labels, and empirical judgments of problem difficulty are often subjec-
tive and inconsistent across annotators or domains, we assess the reliability of the proposed
difficulty coefficient by examining its correlation with two commonly accepted proxies
for problem complexity: the number of theorem steps required for a solution and the
actual solving time. We employed three classical statistical measures: Pearson’s correlation
coefficient r to quantify linear relationships, Spearman’s rank correlation coefficient ρ for
monotonic associations, and the coefficient of determination R2 from linear regression
to assess the proportion of explained variance. Statistical significance is reported using
p-values, with p < 0.001 indicating highly significant results.

First, we analyzed the number of theorems used in a solution across all 7000 problems
in the FormalGeo7K dataset. The results showed a strong positive correlation between
the proposed difficulty coefficient and the number of theorem steps, with r = 0.906
and ρ = 0.935 (both p < 0.001), and a regression result of R2 = 0.822. This indicates
that the number of theorem steps accounts for over 82% of the variance in the difficulty
coefficient. For example, problems requiring eight theorems received significantly higher
difficulty scores than those solvable with only two theorems. This finding aligns with
the intuitive notion that more theorem steps correspond to greater problem difficulty in
human problem solving.
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Next, we evaluated the correlation between actual solving time and the proposed
difficulty coefficient. On the FormalGeo7K test set (1400 problems), the solving time of the
HyperGNet model (using greedy beam search with a beam size of 5) showed a moderate
correlation with the difficulty coefficient. The Pearson coefficient was r = 0.373 (p < 0.001),
and the Spearman coefficient was ρ = 0.413 (p < 0.001), while the explanatory power of
regression remained low (R2 = 0.139).

These results indicate that the difficulty coefficient partially captures problem-solving
efficiency, but it may benefit from further refinement by incorporating deeper indicators
such as the topological complexity of the solution hypertree. For further analysis, The
relatively weak association may also stem from the asymmetric nature of solving time,
which is affected not only by the intrinsic logical complexity of a problem but also by
external factors such as theorem prediction accuracy and computational resource allocation.
For example, simple problems may require more time due to redundant search paths,
whereas complex problems might converge quickly if key theorems are accurately predicted
early in the process. Therefore, solving time is more indicative of model efficiency than of
the inherent difficulty of the problem.

In summary, the statistical analyses demonstrate that the proposed difficulty coefficient
is a highly reliable indicator of geometry problem complexity. Its strong correlation with the
number of theorem steps (r > 0.9) and substantial explanatory power (R2 > 0.8) highlight
its effectiveness in capturing the demands of multi-step reasoning. In contrast, its moderate
correlation with solving time reflects the nonlinear interplay between algorithmic efficiency
and inherent problem difficulty. Future work may explore the integration of topological
features from solution hypergraphs and measures of algebraic computation complexity to
construct multimodal regression models and further improve the generalizability of the
difficulty coefficient.

5.4. Experiments in FormalGeo30K

We further conducted experiments on the FormalGeo30K dataset. Table 2 presents
the results of different models across multiple evaluation dimensions, including over-
all and level-wise Problem Completion Rate PCR, Success Rate, and inference time.
The levels l1 through l6 correspond to the six difficulty tiers defined by our proposed
difficulty coefficient.

Experimental results demonstrate that the substantial expansion of geometric problem
data significantly enhances the generalization capabilities of models. For example, Hyper-
GNet, with a greedy beam search strategy(GB), achieves an overall Problem Completion
Rate of 97.84% and an Overall Success Rate of 96.38%, clearly outperforming traditional pre-
trained models. This indicates that a richer combination of theorems and structural patterns
not only improves the model’s comprehension of problem structures but also strengthens
its robustness and generalization across diverse tasks. Notably, HyperGNet maintains
strong performance even on high-difficulty problems (l5 − l6), showing its superiority in
complex geometric reasoning tasks.

In addition, compared to its performance on the FormalGeo7K dataset, T5-small
exhibits substantial improvement on FormalGeo30K, with its overall success rate surpassing
that of the BART-base. This further confirms the critical role of large-scale, diverse data in
releasing the full potential of model capabilities.
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Table 2. Experimental results in FormalGeo30K dataset.

Metrics Method Strategy Total l1 l2 l3 l4 l5 l6

PCR (%)

T5-small NB 94.12 95.43 94.98 91.91 89.37 78.52 63.51
BART-base NB 94.16 96.51 94.15 89.29 85.12 73.96 72.27
HyperGNet NB 96.10 97.05 96.27 93.86 94.32 88.66 75.53
HyperGNet GB 97.84 99.21 97.78 95.19 93.29 87.23 78.01

Success Rate (%)

T5-small NB 89.49 94.54 89.16 80.98 68.51 47.37 35.00
BART-base NB 88.02 95.33 86.95 72.16 57.14 42.11 35.00
HyperGNet NB 92.42 96.07 92.01 84.89 81.49 66.32 41.67
HyperGNet GB 96.38 99.05 96.12 91.34 87.34 77.89 58.33

Time (s)

T5-small NB 19.42 10.67 17.18 31.22 48.36 125.44 187.68
BART-base NB 16.79 6.99 15.03 32.02 61.01 90.41 180.64
HyperGNet NB 96.10 8.50 31.13 53.58 72.85 126.86 198.75
HyperGNet GB 43.85 20.80 49.10 91.01 121.49 196.86 286.25

However, despite the significant improvements in scale and coverage in Formal-
Geo30K, the distribution of problem difficulty remains imbalanced. A large proportion of
the dataset consists of low and medium difficulty problems (l1 − l3), which can artificially
inflate aggregate performance metrics. As overall metrics alone are insufficient to accurately
reflect a model’s actual problem-solving proficiency, we emphasize performance analysis
across difficulty levels. Accordingly, we report the average success rate and average PCR
across all difficulty levels, calculated as follows:

Average Metric =
1
N

N

∑
i=1

Metrici

where N denotes the number of difficulty levels, and Metrici is the success rate or PCR
corresponding to the i-th difficulty level. Using this metric, we observe that with the
augmented dataset, the FGeo-HyperGNet model’s average success rate improves from
77.43% to 85.01%, while the average PCR increases from 88.57% to 91.79%.

Furthermore, stratified analysis reveals deeper inter-model distinctions. Although
BART-base registers lower overall PCR and success rate than HyperGNet, on the highest
difficulty problems (l6), its PCR exceeds that of T5-small by nearly 10% and approaches
HyperGNet’s performance. However, its success rate remains similar to that of T5-small
and markedly lower than HyperGNet’s. These results suggest that BART-base may possess
a structural advantage on certain complex problem types, offering targeted utility in
specific sub-tasks despite its overall performance limitations. Consequently, FormalGeo30K
facilitates more fine-grained and informative model comparisons.

In conclusion, FormalGeo30K markedly extends both the breadth and depth of model
training and evaluation and, through multidimensional metrics, illuminates the capability
boundaries of geometric reasoning models. These findings highlight the essential role of
large-scale, structurally diverse datasets in advancing geometric problem-solving models.

6. Conclusions
In this paper, we introduce a comprehensive performance evaluation framework,

FGeo-Eval, for geometry problem solving, with significant advancements in both solution
completeness assessment and difficulty modeling. We propose the Problem Completion
Rate metric PCR, which utilizes hypergraph-based structures to effectively capture partial
reasoning progress and address the limitations of traditional success rate metrics in iden-
tifying incomplete solutions. Our difficulty modeling mechanism, grounded in theorem
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complexity, systematically estimates and classifies problem difficulty by incorporating
reasoning depth and theorem usage frequency. Additionally, we release FormalGeo30K,
an extended version of FormalGeo7K, to support large-scale and diverse model training
and evaluation. Extensive experiments confirm the validity of the proposed metrics and
demonstrate significant performance improvements enabled by large-scale data. In sum-
mary, FGeo-Eval provides a robust foundation for model optimization and the development
of interpretable, efficient, and scalable AI systems for geometry problem solving.

Nevertheless, the current PCR metric may be influenced by solver-specific behaviors
and does not yet account for signals from algebraic reasoning components, which could
limit its generalizability. Similarly, the proposed difficulty coefficient primarily reflects theo-
rem usage patterns but does not fully capture aspects such as topological or computational
complexity. In future work, we will refine FGeo-Eval by incorporating solver-independent
indicators and broader complexity features and further leverage its feedback mechanisms
to enhance model components within the FormalGeo framework, pushing automated
geometry problem solving toward higher levels of sophistication.
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