
FormalGeo: An Extensible Formalized
Framework For Olympiad Geometric Problem

Solving

Xiaokai Zhang1, Na Zhu1,2, Yiming He1,2, Jia Zou1,2, Qike Huang1,2, Xiaoxiao
Jin1,2, Yanjun Guo1,2, Chenyang Mao1,2, Yang Li1, Zhe Zhu1,2, Dengfeng

Yue1,2, Fangzhen Zhu1, Yifan Wang1,2, Yiwen Huang1, Runan Wang1,2, Cheng
Qin1,2, Zhenbing Zeng3, Shaorong Xie1, Xiangfeng Luo1, and Tuo Leng1,2(B)

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
tleng@shu.edu.cn

2 Institute of Artificial Intelligence, Shanghai University, Shanghai, China
3 College of Sciences, Shanghai University, Shanghai, China

Abstract. This is the first paper in a series of work we have accom-
plished over the past three years. In this paper, we have constructed
a consistent plane geometry formal system. This will serve as a crucial
bridge between IMO-level plane geometry challenges and readable AI
automated reasoning. Within this formal framework, we have been able
to seamlessly integrate modern AI models with our formal system. AI
is now capable of providing deductive reasoning solutions to IMO-level
plane geometry problems, just like handling other natural languages,
and these proofs are readable, traceable, and verifiable. We propose the
geometry formalization theory (GFT) to guide the development of the
geometry formal system. Based on the GFT, we have established the For-
malGeo, which consists of 88 geometric predicates and 196 theorems. It
can represent, validate, and solve IMO-level geometry problems. we also
have crafted the FGPS (formal geometry problem solver) in Python. It
serves as both an interactive assistant for verifying problem-solving pro-
cesses and an automated problem solver. We’ve annotated the formal-
geo7k and formalgeo-imo datasets. The former contains 6,981 (expand to
133,818 through data augmentation) geometry problems, while the lat-
ter includes 18 (expand to 2,627 and continuously increasing) IMO-level
challenging geometry problems. All annotated problems include detailed
formal language descriptions and solutions. AI can be integrated into
formal systems in various roles. It can act as a parser, enabling the aut-
oformalization of natural language and geometric diagrams. It can also
serve as a solver, running search tree pruning. Implementation of the
formal system and experiments validate the correctness and utility of
the GFT. The backward depth-first search method only yields 2.42%
problem-solving failure rate on formalgeo7k. We can incorporate deep
learning techniques to achieve lower one. The source code of FGPS and
datasets are available here.

Keywords: Formal mathematics · Human-like automated reasoning ·
IMO-level Geometry problem solving

ar
X

iv
:2

31
0.

18
02

1v
6

 [
cs

.A
I]

 1
5

Fe
b

20
24

https://github.com/BitSecret/FGPS

2 X. Zhang et al.

1 Introduction

Since the inception of mathematics, it has inherently encompassed both struc-
ture and computation. These two facets not only interact with each other but
also mutually reinforce each other. With the advent of modern computing, it has
started to exert its influence on mathematics in two distinct ways. On one hand,
it serves as a mathematical tool, empowering mathematical computations more
than ever before, thereby directly impacting the balance of values and method-
ologies within mathematics. On the other hand, as a mathematical medium, it
indirectly reshapes the content and structure of mathematics through innovative
applications, ushering in an unprecedented era of prosperity and development
for the field.

Within this transformative landscape, the field of mathematical mechaniza-
tion emerged, situated at the intersection of mathematics and computer science.
The translation and conversion of mathematical knowledge into a language com-
prehensible to computers are evidently the first and indispensable steps in the
fusion of mathematics and computer science. This is the essence of formal math-
ematics.

Formal mathematics serves as the foundation for computer-aided mathemat-
ical problem-solving. It employs a symbol system that adheres to a particular
artificial grammar, enabling the representation of any concept, proposition, and
inference. It is only when mathematical knowledge is rigorously formalized that
the problem-solving process in mathematics can be described as a determinis-
tic algorithm and implemented within a computer. Over the course of several
decades, numerous formal mathematics systems and tools have emerged, such
as Lean, Isabelle and Coq.

The development of artificial intelligence (AI) has introduced a new paradigm
for computer-aided mathematical problem-solving. AI-assisted mathematical prob-
lem solving is a rapidly developing area which aims to apply deep learning
technology to math problem. AI systems can assume various roles within for-
mal mathematical systems. They can serve as mathematical problem solvers
[59,35,22,26,23], automatically generating problem solutions. They can act as
mathematical problem parsers [48,12,57], assisting humans in converting math-
ematical knowledge into formal descriptions. Moreover, they can even take on
the role of mathematical problem proposers [14,36,31], suggesting mathematical
conjectures.

A consistent mathematical formal system is an indispensable component of
AI-assisted mathematical problem-solving. On the one hand, a unified format for
mathematical problem descriptions and datasets helps in avoiding interference
from other factors and serves as a standard for evaluating the capabilities of AI
models. On the other hand, the answers generated by AI models must be verified
for credibility, and manual verification is both inefficient and error-prone. This
necessitates the capability for computers to automatically validate the answers.
The Stanford 2021 AI100 report [28] designates the IMO grand challenge [13] as
a landmark event in the development of artificial intelligence: To create an AI
system capable of receiving a formal problem representation, generating a formal

FormalGeo 3

(i.e., machine-checkable) proof for the problem, and attaining a gold medal in
the International Mathematical Olympiad. AIMO Prize [49] was established to
motivate the development of AI models that are capable of winning a gold medal
in the IMO. Serving as a bridge that connects the two crucial research domains
of AI and mathematics, formal mathematics has garnered increasing attention
from researchers.

The intersection and fusion of AI and formal mathematics have yielded a
series of achievements. However, as an essential branch of formal mathematics,
the formalization and mechanized solving of geometric problems have still made
slow progress. As depicted in Fig. 1, this domain has long been constrained by
three major challenges: inconsistent knowledge form, unreadable solving process
and non-mechanized solving method.

Axiomatic

System

Geometry

Formal

System

Theory Architecture Three Major Challenges and Solutions

Geometry

Geometry

Formalization

Theory

Computer Algebra

Set Theory
Solver

Problem transformation

Solving problems in Geometry

to

Search problems in CS

Problem transformation

Solving problems in Geometry

to

Search problems in CS

AI-assisted

Classical search algorithms

with

AI-assisted Pruning

AI-assisted

Classical search algorithms

with

AI-assisted Pruning

Problem transformation

Solving problems in Geometry

to

Search problems in CS

AI-assisted

Classical search algorithms

with

AI-assisted Pruning

AI-assisted

AI-assisted Formalization

AI-assisted Informalization

AI-assisted

AI-assisted Formalization

AI-assisted Informalization

Formal Language

Geometry definition language (GDL)

Condition declaration language (CDL)

Formal Language

Geometry definition language (GDL)

Condition declaration language (CDL)

Structured Solving Process

Solving process hypergraph

Hypernode: conditions

Hyperedge: theorems

Structured Solving Process

Solving process hypergraph

Hypernode: conditions

Hyperedge: theorems

AI-assisted

AI-assisted Formalization

AI-assisted Informalization

Formal Language

Geometry definition language (GDL)

Condition declaration language (CDL)

Structured Solving Process

Solving process hypergraph

Hypernode: conditions

Hyperedge: theorems

Readable Solving Process

GPL Executor

Traceable relational inference

Minimal dependent system of equations

Readable Solving Process

GPL Executor

Traceable relational inference

Minimal dependent system of equations

Solving process output

Interactive mode

Solving process hypergraph

Theorem Directed Acyclic Graph

Solving process output

Interactive mode

Solving process hypergraph

Theorem Directed Acyclic Graph

Readable Solving Process

GPL Executor

Traceable relational inference

Minimal dependent system of equations

Solving process output

Interactive mode

Solving process hypergraph

Theorem Directed Acyclic Graph

Parsing

GDL parsing and custom configuration

CDL parsing and inverse parsing

Parsing

GDL parsing and custom configuration

CDL parsing and inverse parsing

Guaranteeing correctness and consistency

Entity existence check

Condition validity check

Automatic diagram construction

Condition expansion

Guaranteeing correctness and consistency

Entity existence check

Condition validity check

Automatic diagram construction

Condition expansion

Parsing

GDL parsing and custom configuration

CDL parsing and inverse parsing

Guaranteeing correctness and consistency

Entity existence check

Condition validity check

Automatic diagram construction

Condition expansion

Search method

Forward search

Backward search

AI-assisted search

Search method

Forward search

Backward search

AI-assisted search

Search strategy

Breadth-first search

Depth-first search

Beam search

Random search

Search strategy

Breadth-first search

Depth-first search

Beam search

Random search

Search method

Forward search

Backward search

AI-assisted search

Search strategy

Breadth-first search

Depth-first search

Beam search

Random search

Non-mechanized

solving method

Problem-solving relies on human

experience, lacking definite solving

procedures.

Non-mechanized

solving method

Problem-solving relies on human

experience, lacking definite solving

procedures.

Geometry Ontology

Geometry ontology domain

Geometry knowledge graph

Geometry Ontology

Geometry ontology domain

Geometry knowledge graph

Geometry Representation Theory

Topological mapping method

Topological construction method

Geometric predicate logic

Geometry Representation Theory

Topological mapping method

Topological construction method

Geometric predicate logic

Geometry Ontology

Geometry ontology domain

Geometry knowledge graph

Geometry Representation Theory

Topological mapping method

Topological construction method

Geometric predicate logic

Inconsistent

knowledge form

Geometric knowledge is represented through

text and geometric shapes. The problem-solving

process involves algebraic calculations, logical

operations, and relational inference.

Inconsistent

knowledge form

Geometric knowledge is represented through

text and geometric shapes. The problem-solving

process involves algebraic calculations, logical

operations, and relational inference.

Unreadable

solving process

The algebra-based approach is unreadable,

while other methods have limitations in

problem-solving abilities.

Unreadable

solving process

The algebra-based approach is unreadable,

while other methods have limitations in

problem-solving abilities.

Axiomatic

System

Geometry

Formal

System

Theory Architecture Three Major Challenges and Solutions

Geometry

Geometry

Formalization

Theory

Computer Algebra

Set Theory
Solver

Problem transformation

Solving problems in Geometry

to

Search problems in CS

AI-assisted

Classical search algorithms

with

AI-assisted Pruning

AI-assisted

AI-assisted Formalization

AI-assisted Informalization

Formal Language

Geometry definition language (GDL)

Condition declaration language (CDL)

Structured Solving Process

Solving process hypergraph

Hypernode: conditions

Hyperedge: theorems

Readable Solving Process

GPL Executor

Traceable relational inference

Minimal dependent system of equations

Solving process output

Interactive mode

Solving process hypergraph

Theorem Directed Acyclic Graph

Parsing

GDL parsing and custom configuration

CDL parsing and inverse parsing

Guaranteeing correctness and consistency

Entity existence check

Condition validity check

Automatic diagram construction

Condition expansion

Search method

Forward search

Backward search

AI-assisted search

Search strategy

Breadth-first search

Depth-first search

Beam search

Random search

Non-mechanized

solving method

Problem-solving relies on human

experience, lacking definite solving

procedures.

Geometry Ontology

Geometry ontology domain

Geometry knowledge graph

Geometry Representation Theory

Topological mapping method

Topological construction method

Geometric predicate logic

Inconsistent

knowledge form

Geometric knowledge is represented through

text and geometric shapes. The problem-solving

process involves algebraic calculations, logical

operations, and relational inference.

Unreadable

solving process

The algebra-based approach is unreadable,

while other methods have limitations in

problem-solving abilities.

Fig. 1. Three major challenges and solutions in formal plane geometry.

Addressing the first challenge, we introduced the geometry formalization the-
ory (GFT) to unify the representation of geometric knowledge, including geom-
etry ontology and geometry representation theory. geometry ontology provides
a comprehensive overview of plane geometry from a highly abstract philosophi-
cal perspective, creating the geometry ontology domain. The geometry ontology
domain consists of four quadrants based on the dimensions of number-shape and
dynamic-static. Each quadrant maps the relationships between modern geomet-
ric axiom systems, geometry formal systems, and solvers across three hierarchical
levels. Leveraging the geometry ontology domain, we can ensure the compre-
hensiveness of formal system design. Geometry representation theory investi-

4 X. Zhang et al.

gates how to represent static geometric knowledge and dynamic problem-solving
processes. Based on topological mapping method and topological construction
method, we can transform geometric diagrams into textual or symbolic descrip-
tions. Using geometry predicate logic, we can unify relation reasoning, logical
operations, and algebraic calculations into rigorous formal representations.

Addressing the second challenge, we designed a set of geometry formal lan-
guages to serve as a bridge for communication between humans and computers.
geometry formal languages consist of geometry definition language and condition
declaration language, where the former is used to personalize the configuration
of solvers and import into the formal system, and the latter is used for inputting
problem descriptions. Geometry formal languages possess rigorous syntactic de-
scriptions that can be mechanically processed by computers, while their syntax
is similar to predicate logic, providing good readability. We abstract the process
of geometry problem-solving as a hyper tree (as shown in Fig. 10), where tree
nodes represent known conditions, tree edges represent geometric theorems, and
the problem-solving process is a path from the root node to the target leaf node.
We can also utilize modern AI techniques to automatically translate between
natural language and formal language, further enhancing readability.

Addressing the third challenge, we transformed the mathematical problems
of geometric problem-solving into computational search problems in the field of
computer science, achieving both forward search and backward search. Forward
search starts with known conditions and continuously applies theorems to obtain
new conditions until the target condition is achieved. Backward search starts
from the problem goal, expands the goal into multiple subgoals according to
theorems, and repeats this process until all new subgoals are known conditions.
The vast search space gives rise to the problem of combinatorial explosion, with
the search time for difficult problems exhibiting exponential growth. Pruning of
the search tree is essential. In addition to classical pruning techniques such as
Monte Carlo Tree Search and Alpha-Beta pruning, we leverage deep learning as
a powerful pruning method to accelerate the solving process.

Our contributions can be summarized as follows:

1.We propose the GFT, which comprises geometry ontology and geometry
representation theory. This theory provides a comprehensive framework for the
field of plane geometry, unifying the representation of symbolic geometric knowl-
edge and graphic geometric knowledge. It encompasses various operations, in-
cluding relation reasoning, logical operations, and algebraic calculations, within
a unified representation framework.

2.We have established the FormalGeo based on the GFT, which consists of
88 geometric predicates and 196 theorems. It can represent, validate, and solve
geometry problems from STA-level to IMO-level.

3.We have crafted the formal geometry problem solver (FGPS) in Python. It
serves as both an interactive assistant for verifying problem-solving processes and
an automated problem solver, utilizing various methods such as forward search,
backward search and AI-assisted search and various strategy such as depth-first
search, breadth-first search, random search and beam search. FGPS incorporates

FormalGeo 5

features such as formal statement parsing, condition validity checks, automatic
diagram construction, and condition expansion. It is capable of executing back-
trackable, interpretable algebraic equation solving and relational reasoning.

4.We’ve annotated the formalgeo7k and formalgeo-imo datasets. The former
contains 6,981 (expand to 133,818) geometry problems, while the latter includes
18 (expand to 2,627 and continuously increasing) IMO-level challenging geome-
try problems. Each problem comprises a complete natural language description,
geometric shapes, formal language annotations, and theorem sequences annota-
tions.

5.We conducted experiments on the formalgeo7k, comparing two search-
based problem-solving methods (forward and backward) and 4 search strategies
(breadth-first, depth-first, random, beam) in terms of their success rate, time-
consuming, and search step. The forward random search method yields a 39.7%
problem-solving accuracy rate, and we can incorporate deep learning techniques
to achieve higher one.

2 Related Work

Gelernter et al. developed the pioneering automated geometry problem-solving
system known as the Geometry Theorem Prover [18], which employed a back-
ward search approach to solve pre-formalized problems. Nevins pointed out that
the forward chaining method [32] can also be effective by efficiently represent-
ing the known conditions of the problem and limiting the typical application of
those conditions. The development of geometry problem solving has led to the
emergence of various downstream tasks, including geometry problem formaliza-
tion [15,37],geometric knowledge extraction [39,38,53,20,61], geometric diagram
parsing [41,57,46], geometric theorem proving [55,16,25], and geometry problem
solving [42,60,1,2,40,54].

Wen-Tsun proposed the Wu’s Method [47], which transforms geometry prob-
lem into a system of algebraic equations consisting of polynomials and inequal-
ities and leverages various algebraic techniques to solve these equations. The
study of algebraic approaches to geometry problems has given rise to a range of
research achievements, such as Buchberger’s Gröbner bases method [3], numeri-
cal parallel methods [50], polynomial system triangulation elimination algorithm
[17], cylindrical algebraic decomposition for solving inequalities [11], dimension-
ality reduction methods [30], and software tools like GEOTHER [44].

Zhang proposed the point elimination method based on geometric invariants
[56]. This approach employs constructive methods to describe problems and is
capable of generating concise and meaningful readable proofs for a large num-
ber of non-trivial geometric problems. Subsequently, research on machine proofs
of geometric theorems based on geometric invariants rapidly advanced [7,8,27],
leading to the development of practical software tools such as Geometry Ex-
plorer [45], Geometry Expert [10] and Java Geometry Expert [52]. The method
based on geometric invariant can also be extended to solid geometry [9] and
non-Euclidean geometry [51].

6 X. Zhang et al.

The machine proof of geometric theorems can generally be categorized into
the three aforementioned approaches [24]: search-based synthesis methods, al-
gebra methods, and points elimination methods based on geometric invariants.
Synthesis method can provide proofs of traditional style but can only prove a
small subset of carefully chosen plane geometry theorems due to the limited com-
putational power of computers and the combinatorial explosion inherent in these
methods. Algebra methods can handle a wide range of problem types, but the
solving process typically involves algebraic expressions that are difficult to man-
ually verify and obtain readable proof procedures. Methods based on geometric
invariants can provide readable proof procedures, but the types of problems that
can be solved are limited by the types of geometric invariants available.

Geometry problem solving has been gaining more attention in the NLP com-
munity recently. Several geometry formal systems and datasets have been con-
structed, such as Geometry3K [29], GeoQA [6], GeometryQA [43]. Geometry3K
translates the known conditions of geometric problems into formal statements,
defining theorems as a set of rules for converting between formal statements.
This approach, referred to as Formal Language, is also used in GeoRE [53],
which focuses on geometric relation extraction, and PGDP5k [19], which is de-
signed for geometric image parsing. While these methods are intuitive, they
lack theoretical guidance, are not comprehensive, and are not easily extensible
with additional predicates and theorems. GeoQA employs the formal method of
Program, transforming the geometric problem-solving process into a sequence of
programs consisting of variables and operators. Executing this program sequence
yields the solution. Subsequent work extended the number and types of ques-
tions and rules, resulting in GeoQA+ [4], UniGeo [5], and PGPS9K [58]. These
formal methods can represent algebraic and symbolic problem-solving processes,
but compared to formal language methods, they are less intuitive and cannot
represent traditional geometric problem-solving processes. Additionally, adding
new rules requires modifying the solver’s code, making them less extensible.
GeometryQA employs a formal method known as the Expression Tree, which
transforms the problem-solving process into a solving tree composed of opera-
tors and variables. This method is similar to the programmatic approach but is
more structured.

Shared benchmarks and datasets have significantly advanced research in AI-
assisted geometric problem solving. Several AI systems, such as CL-based model
[21], SCA [33], GeoDRL [34], have been constructed to achieve higher success
rates in problem solving. As problem-solving success rates continue to improve,
there is a growing demand for datasets with higher quality and difficulty. Previ-
ous work focused on AI system research but overlooked research into geometry
formalization theory. Expanding datasets in existing systems requires substan-
tial modifications to solver code, making it challenging to extend both the formal
systems and datasets.

FormalGeo 7

3 Geometry Formalization Theory

In the realm of geometry, a typical problem consists of known conditions de-
scribed in natural language, the problem objective, and a geometric diagram.
The problem-solving process can be construed as the application of multiple
theorems, involving relational reasoning and algebraic computation. The study
of GFT focuses on how to transform geometric problems and their solution pro-
cesses, described in natural language and images, into a unified and precise for-
mal language for mechanical processing by computers. GFT comprises 3 major
components: geometry ontology, geometry representation theory, and geometry
formal language.

Geometry ontology studies the fundamental ontology within the field of ge-
ometry and the relationships between these ontological elements. It employs
the geometry ontology domain, which provides a comprehensive and systematic
summary of the knowledge of Euclidean plane geometry. The geometry ontology
domain further refines into the geometry knowledge graph, guiding the design
of geometry formal systems.

Geometry representation theory investigates how to express geometric knowl-
edge using formal language. Formal systems are abstract descriptions and sim-
ulations of the real world, with a one-to-one correspondence to the real world.
Consistency theory explores how to establish a correct formal system. Under
the guidance of consistency theory, we propose geometry representation theory.
When transforming various geometric knowledge into a unified formal language,
we must ensure the consistency of static representations (such as the formal
representation of diagrams) and the consistency of dynamic processes (such as
theorems described in formal language).

Geometry formal language takes the form of structured geometric knowledge,
divided into two categories: geometry definition language (GDL) and condition
declaration language (CDL). GDL includes predicate definition language and
theorem definition language. The former defines various types of geometric rela-
tions and properties, while the latter defines various theorems that may be used
in the problem-solving process. During the initialization phase of a geometric
problem solver, GDL is used to configure the solver, achieving its shareability
and extensibility. CDL is employed to describe the known conditions of indi-
vidual geometric problems and is divided into three categories: construction
statements, condition statements, and objective statements. CDL allows us to
input geometric problems into the solver.

3.1 Geometry Ontology

Geometry ontology domain consists of two dimensions: number and shape, and
static and dynamic. Number refers to precise and quantitative descriptions of
geometric knowledge, while shape pertains to generalized and qualitative de-
scriptions of geometric knowledge. Static refers to various geometric knowledge
elements, such as the properties of geometric figures and their interrelationships.

8 X. Zhang et al.

Dynamic encompasses rules for transforming different types of geometric knowl-
edge, including common knowledge and theorems.

Property

Structure

Predicate

Construct

Constraint

Relation

Basic

Entity

General

Entity

Entity

Relation

Attribute

Property

Attribute

Determination

Definition

Property

Attribute

Determination

Definition

Property

Structure

Predicate

Construct

Constraint

Relation

Basic

Entity

General

Entity

Entity

Relation

Attribute

Property

Attribute

Determination

Definition

Property

Attribute

Determination

Definition

Number Shape

Static

Dynamic

Condition

declaration language

(CDL)

Geometry

definition language

(GDL)

Equation

Ordered

List of

Points

System of

equations

Constrained

Cartesian

Product

Number Shape

Static

Dynamic

Condition

declaration language

(CDL)

Geometry

definition language

(GDL)

Equation

Ordered

List of

Points

System of

equations

Constrained

Cartesian

Product

Fig. 2. Geometry ontology domain (left). It consists of two dimensions: number and
shape, and static and dynamic and further subdivided into three levels: axiomatic
systems, formal systems, and solvers. Simplified geometry knowledge graph (right).
Rectangles represent static geometric knowledge, while circles represent dynamic pro-
cesses of transforming geometric knowledge. An example can be found in App. A.2.

These two dimensions divide the geometry ontology domain into four quad-
rants, each further subdivided into three levels of mapping relationships: ax-
iomatic systems, formal systems, and solvers, as shown in Fig. 2. The outermost
layer, axiomatic systems, refers to geometric knowledge described in natural
language or diagrams, such as problem conditions and theorem definitions. The
intermediate layer, Formal Systems, transforms vague and uncertain natural lan-
guage descriptions and knowledge in different forms from text and diagrams into
precise, human-readable, and computable formal languages, serving as a bridge
between humans and computers. The innermost layer, Solvers, represents the
specific internal form of geometric knowledge within a computer, including data
structures for problem conditions and applying methods for theorems. App. A.1
provides examples for various components of the geometry ontology domain to
facilitate understanding.

By further expanding geometry ontology domain, we construct geometry
knowledge graph as shown in Fig. 2. Construction statements contain all the
structural information of geometric figures. Starting from three types of con-
struction statements, we derive all basic entities. By imposing further constraints
on basic entities, we obtain general entities. Basic entities and general enti-
ties interact internally and with each other, forming entity relationships. At-
tributes represent quantifiable descriptions of geometric objects. Construction
statements, basic entities, general entities, entity relationships, and attributes
describe the static aspects of geometric knowledge. Properties, definitions, and
judgments describe the dynamic processes of transforming geometric knowledge,

FormalGeo 9

i.e., theorems. The knowledge graph of geometry provides a detailed represen-
tation of the relationships and hierarchical structure among various geometric
knowledge components. Using the knowledge graph of geometry ensures that the
constructed formal system is more comprehensive and avoids omissions.

3.2 Geometry Representation Theory

App. B introduces the consistency theory of formal systems. Guided by this
theory, when constructing a geometry formal system, we must ensure the con-
sistency of static representation and the consistency of dynamic processes.

Consistency in Static Representation In the field of geometry, various ge-
ometric knowledge is conveyed through textual descriptions or geometric di-
agrams. Geometric knowledge in textual form is presented using natural lan-
guage and mathematical symbols, making it relatively straightforward to trans-
form into structured formal language. However, the challenge lies in formalizing
the geometric knowledge implicit in geometric diagrams, which necessitates es-
tablishing a reversible mapping between geometric diagrams and their formal
representations.

We classify the information inherent in geometric diagrams into two cat-
egories: topological structure information (TSI) and metric information (MI).
TSI defines the fundamental structure of a diagram and serves as a crucial ba-
sis for classifying different geometric shapes. MI further characterizes various
properties of the diagram, such as the length of lines and the measure of angles.
MI is closely related to TSI and is relatively amenable to summarization and
formalization. The primary challenge lies in formalizing the TSI.

The most fundamental elements that compose a geometric diagram are points,
which can be used to describe the TSI of the diagram. We can define a set of
rules that utilize the points constituting the diagram to depict its TSI.

Closed geometric figures can be transformed into topologically equivalent cir-
cles, as shown in Fig. 3. Unfolding the circle from any position of the topologically
equivalent circle into a straight line, the relative positions of points on the line
record the topological structural information of the original diagram. We can use
an ordered list of points as the formal representation of the geometric topological
structural information. For non-closed geometric figures, we can first transform
them into closed geometric diagrams before proceeding with formalization, as
shown in Example.4. of Fig. 3. By unfolding the topologically equivalent cir-
cle from different positions, we may obtain different ordered lists of points. All
these ordered lists together form a set, serving as the formal representation of
the topological structural information of geometric diagram. Any element in the
set contains all the topological structural information of the original diagram.

The basic transformations of a geometric diagram can be defined as several
operations on its formal representation, as shown in App. C.

The above method is called the topological mapping method, which can be
used for the formalization of a simple geometric diagram. In practice, a geomet-
ric problem’s diagram is often composed of a combination of simple geometric

10 X. Zhang et al.

Example.4.

Example.3.

Example.2.

Example.1.

D

C B

AD

C B

A

A

C B

DA

C B

D

A

B C

DA

B C

D

D

C A

B

D

C A

B

A

C D

B

A

C D

B

A

B D

C

A

B D

C

A B

C

A B

C

A B

C

A B

C

A C

B

A C

B

A B CA B C

A B C DA B C D B C D AB C D A

C D A BC D A B D A B CD A B C

A B C D B C D A

C D A B D A B C

D A C BD A C BB D A CB D A C

C B D AC B D AA C B DA C B D

D A C BB D A C

C B D AA C B D

D C B AD C B A C B A DC B A D

B A D CB A D C A D C BA D C B

D C B A C B A D

B A D C A D C B

Example.4.

Example.3.

Example.2.

Example.1.

D

C B

A

A

C B

D

A

B C

D

D

C A

B

A

C D

B

A

B D

C

A B

C

A B

C

A C

B

A B C

A B C D B C D A

C D A B D A B C

D A C BB D A C

C B D AA C B D

D C B A C B A D

B A D C A D C B

Fig. 3. Examples of topological mapping method

diagrams. We propose the topological construction method, which utilizes the
formal representations of multiple simple geometric diagrams to obtain the for-
mal representation of a composite diagram.

+

Shape(ABC)

Shape(ACD)

Shape(ADE)

Collinear(BCD)

Structure information

Shape(ABC)

Shape(ACD)

Shape(ADE)

Collinear(BCD)

Structure information

Perpendicular(AC,DC)

Parallel(AE,BD)

Parallel(BA,DE)

Metric information

Perpendicular(AC,DC)

Parallel(AE,BD)

Parallel(BA,DE)

Metric information

A

B C

A

B C

A

B C D

EA

B C D

E

A

B C D

EA

B C D

E

Decomposition

Composition

A

B C
D

A

B C
D

A

B C
D

EA

B C
D

E A

B C D

EA

B C D

E

+

Shape(ABC)

Shape(ACD)

Shape(ADE)

Collinear(BCD)

Structure information

Perpendicular(AC,DC)

Parallel(AE,BD)

Parallel(BA,DE)

Metric information

A

B C

A

B C D

E

A

B C D

E

Decomposition

Composition

A

B C
D

A

B C
D

E A

B C D

E

Fig. 4. An example of topological construction method

The topological construction method decomposes the composite diagram into
simple geometric diagrams while preserving the TSI between them, TSI of each
simple geometric diagram and MI of each simple geometric diagram. When con-
structing a diagram, it first reconstructs the basic structure of the original dia-
gram based on the TSI and then adjusts the diagram further according to the
MI to obtain the original diagram. The topological construction method is a
constructive drawing method that is not affected by the order of construction
statements, as shown in Fig. 4. We have implemented topological construction
method in FGPS, and the algorithm description and time complexity analysis
can be found in App. D.

FormalGeo 11

The process of constructing a geometric diagram can be denoted as ⊕. If dia-
gram C is composed of diagrams A and B, their formal representations of TSI are
represented as sets Ra, Rb, and Rc, respectively. Diagram A contains m points,
while diagram B contains n points. There are k (k ≥ 2)common points shared

between A and B. Two elements Pa = (p
(a)
1 , . . . , p

(a)
s1 , pi, . . . , pi+k, p

(a)
s2 , . . . , p

(a)
m)

and Pa = (p
(b)
1 , . . . , p

(b)
s1 , pi+k, . . . , pi, p

(b)
s2 , . . . , p

(b)
n) are selected from sets RA and

RB . ⊕ is defined in two steps, as shown in Eq. 1 and Eq. 2. In the first step, ⊗
operation is applied to Pa and Pb to obtain the element Pc. In the second step,
the Pc undergoes the rotate (Eq.22) i times to construct the set Rc.

Pa ⊗ Pb

=(p
(a)
1 , . . . , p(a)s1 , pi, p

(b)
s2 , . . . , p

(b)
n , p

(b)
1 , . . . , p(b)s1 , pi+k)

(1)

Ra ⊕Rb

={rotate(i)(Pa ⊗ Pb)|i = 1, 2, . . . ,m+ n− 2k + 2}
=Rc

(2)

The formal representation of composite diagrams, along with ⊕, forms a
semigroup, satisfying closure, commutative law and associative law. The proof
can be found in App. D.

Consistency in Dynamic Process In essence, geometric theorems are rules
governing the transformation of various geometric knowledge, involving relation
reasoning, logical operations, and algebraic calculations. Geometric predicate
logic (GPL) translates the diverse operations inherent in geometric theorems
into a unified formal language, enabling precise theorem descriptions that can
be mechanically executed by computers.

Geometric knowledge comprises geometric relations and quantitative rela-
tions, with geometric relations as the core, and quantitative relations are at-
tributes of geometric relations. Multiple geometric relations can lead to new
relations through relation reasoning, where elements in these new relations can
be derived through operations on the elements of existing relations.

GPL categorizes operations in geometry into external relation reasoning and
internal relation reasoning, as illustrated in Fig. 5. If the operation results in
a new relation with a different structure, it is termed external relation reason-
ing, also known as relation composition. Confining a relation with constraints to
obtain a stricter relation while preserving the original relation’s structure consti-
tutes internal relation reasoning. Depending on the type of constraint applied,
this can be further categorized into geometric constraints and algebraic con-
straints on relations. Relation reasoning is subdivided into basic operations &, |,
and ∼, which correspond to logical operations AND, OR, and NOT, respectively.

Geometric relations are denoted as R(v1, v2, . . . , vn), v ∈ V , where R is re-
ferred to as the relation name, specifying the type of geometric relation, and
V represents point variables, describing the TSI of the geometric relation. A
geometric relation with N elements is represented as a set R(v1, v2, . . . , vn) =

12 X. Zhang et al.

Relational inference

GPL Conjunction Words

Definition

Relation Composition

(External relational inference)

Geometric constraints

(Internal relational inference)

Algebraic constraints

(Internal relational inference)

& | & | ~ & | ~

Algebraic operations

Constrained

Cartesian Product
Union Difference

withConstrained

Cartesian Product
Union

Constrained

Cartesian Product
Union Difference

Relational inference

GPL Conjunction Words

Definition

Relation Composition

(External relational inference)

Geometric constraints

(Internal relational inference)

Algebraic constraints

(Internal relational inference)

& | & | ~ & | ~

Algebraic operations

Constrained

Cartesian Product
Union Difference

withConstrained

Cartesian Product
Union

Constrained

Cartesian Product
Union Difference

Fig. 5. Definition of geometric predicate logic

{(p(i)1 , p
(i)
2 , . . . , p

(i)
n)|i = 1, 2, . . . , N}, where p are the points constituting the geo-

metric relation. For any element ri = (p
(i)
1 , p

(i)
2 , . . . , p

(i)
n) of a geometric relation,

we define ri(vj) as the value of the position vj of element ri, i.e., ri(vj) = pj .
Quantity relations can be represented by algebraic constraints denoted as RA,
where RA(r) = 1 indicates that an element satisfies the constraint. Given re-

lations R1(v
(1)
1 , v

(1)
2 , . . . , v

(1)
n) and R2(v

(2)
1 , v

(2)
2 , . . . , v

(2)
m), they have k common

variables and their point variables are denoted as V1 and V2. We can obtain a
new relation R3 through GPL.

& is referred to as the constrained Cartesian product and is analogous to the
logical operation AND. The operation is denoted as R1&R2 → R3. Initially, the
Cartesian product operation is applied to R1 and R2, yielding R

′

3. Constraints
are imposed on R

′

3 to select elements that adhere to the constraint conditions.
These constraints necessitate that the elements within R

′

3 exhibit identical val-
ues at the common variable positions of R1 and R2, as shown in Eq. 3, where ×
represents the Cartesian product. Then, duplicate common variables are elim-
inated, leading to the derivation of a new geometric relation R3, as shown in
Eq. 4.

R
′

3(v
(1)
1 , v

(1)
2 , . . . , v(1)n , v

(2)
1 , v

(2)
2 , . . . , v(2)m)

={(r1i , r2j)|(r1i , r2j) ∈ R1 ×R2, r
1
i (v) = r2j (v), v ∈ V1 ∩ V2}

(3)

R1(v
(1)
1 , v

(1)
2 , . . . , v(1)n)&R2(v

(2)
1 , v

(2)
2 , . . . , v(2)m)

={(r(v(3)1), r(v
(3)
2), . . . , r(v

(3)
m+n−k))|r ∈ R

′

3, v
(3) ∈ V1 ∪ V2}

=R3(v
(3)
1 , v

(3)
2 , . . . , v

(3)
m+n−k)

(4)

The definition of & is more straightforward when the second relation is a
quantitative relation. The operation is denoted as R1&RA → R3. The point
variables of RA are a subset of those in R1. We take the elements from R1 and
incorporate them into RA corresponding to the point variables to construct alge-
braic constraints. The set of all elements that satisfy these algebraic constraints
forms a new geometric relation R3, as shown in Eq. 5.

R3(v
(1)
1 , v

(1)
2 , . . . , v(1)n) = {r|r ∈ R1, RA(r) = 1} (5)

FormalGeo 13

| corresponds to the logical operation OR, represented as R1|R2 → R3, as
shown in Eq. 6. | is commonly nested together with & in practical applications.

R3(v
(1)
1 , v

(1)
2 , . . . , v(1)n) = {r|r ∈ R1 ∪R2} (6)

∼ corresponds to the logical operation NOT, represented as ∼ R1 → R3, as
shown in Eq. 7. E is defined as all possible elements within a certain relation,
specifically, all permutations of known points that conform to the structure of
V1.

R3(v
(1)
1 , v

(1)
2 , . . . , v(1)n) = {r|r ∈ E −R1} (7)

GPL satisfies commutative, associative, and distributive laws, as demon-
strated in App. E. The nested use of GPL connectives with geometric and nu-
meric relations provides a powerful expressive capability and can be employed
for the formalization of theorems, as illustrated in App. A.4.

3.3 Geometry Formal Language

Formal languages are categorized into geometry definition language (GDL) and
conditional declaration language (CDL). The former is used to define entities,
attributes, theorems, and other elements of a geometry formal system, while the
latter is employed for declaring known conditions and problem-solving objectives
in geometric problems.

GDL comprises predicate definition language and theorem definition lan-
guage. Predicate definition language is used to define different types of geometric
relations and geometric properties. A typical predicate definition statement in-
cludes the name of the geometric relation, point variables, existential constraints
on entities, format validity constraints, and automatic extension. The solver can
read and interpret predicate definition language to ensure the legitimacy of input
problem conditions.

CDL consists of three main parts: construction statements, condition state-
ments, and goal statements. Construction statements describe the TSI of the
geometric problem’s diagram, such as basic shapes, collinear, and cocircular.
Condition statements are used to input the known conditions in geometric prob-
lems, including both geometric and algebraic relations. goal statements declare
the problem-solving objectives.

Both types of formal languages share the same syntax format, which is similar
to predicate logic syntax. The fundamental concepts are predicates and terms.
Predicates are used to define categories of geometric knowledge, encompassing
geometric relations and algebraic relations. Terms specify the specific content of
this knowledge. If it’s a geometric relation, the term is an ordered sequence of
points; if it’s an algebraic relation, the term is an expression composed of geomet-
ric attributes, operators, free variables, and numbers. Functions are mappings
from individual geometric relation terms to individual algebraic relation terms.
Through such mappings, ordered sequences of points can be used to represent
numeric relations, unifying the representation formats of geometric and numeric

14 X. Zhang et al.

relations. Examples of formal language can be found in App. A.3, App. A.4, and
App. A.5.

4 Geometry Formal System: FormalGeo

Guided by GFT, we have constructed the geometry formal system, FormalGeo.
This formal system comprises 88 predicates and 196 theorems (see App. A.3 and
App. A.4) and can represent, verify, and solve geometric problems ranging from
SAT-level to IMO-level. Based on FormalGeo, we annotated the formalgeo7k
and formalgeo-imo datasets.

The geometric definition language serves as the specific form of the geometry
formal system. The design of the geometry formal system includes the design of
the predicate definition language and the theorem definition language. This sec-
tion introduces the design methodology of FormalGeo and provides an overview
of formalgeo7k and formalgeo-imo datasets.

Utilizing the simplified geometric knowledge graph presented in Fig. 2 as a
template, we formulate the predicate definition language and theorem definition
language for FormalGeo.

4.1 Predicate Definition Language

Structure predicate are used to describe the TSI of geometric figures. FormalGeo
comprises three fundamental structure predicates: Shape, Collinear, and Cocir-
cular. In the problem-solving initialization phase, the solver executes topological
construction method based on recognized structure predicate statements, auto-
matically expanding to 6 basic entities: Point, Line, Angle, Polygon, Arc and
Circle. Basic entities are a more intuitive representation of the TSI of geometric
figures and serve as the core for various geometric and algebraic relations. Struc-
ture predicate and basic entity together are referred to as construction predicate,
which describe the TSI of the figures.

Structure

Predicate
ShapeCollinear Cocircular

PolygonAngleLine

Point

ArcBasic

Entity

Entity Relation Attribution
Custom

Predicate

Circle

Structure

Predicate
ShapeCollinear Cocircular

PolygonAngleLine

Point

ArcBasic

Entity

Entity Relation Attribution
Custom

Predicate

Circle

Fig. 6. Hierarchy of predicates

FormalGeo 15

By applying additional constraints to basic entities, general entities are ob-
tained. Various geometric entities are interconnected, forming entity relations.
Properties are used to describe the MI of entities and entity relations, in conjunc-
tion with free variables, operators, and real numbers, to establish quantitative
relations. General entity, entity relation, and property are collectively referred
to as custom predicate. Fig. 6 illustrates the hierarchical structure and extension
relationships among various geometric predicates. The solver can automatically
extend conditions based on the extension rules defined in the predicate definition
language. It should be noted that the principle of extension rules is followed that
construction predicate are only extended by other construction predicate, and
custom predicate are only extended by other custom predicate.

4.2 Theorem Definition Language

Geometric theorems in a formal system are described using geometric predicate
logic, consisting of premises and conclusions. Based on the characteristics of
their premises and conclusions, geometric theorems can be broadly categorized
into three types: properties, definitions, and determinations. If the premises of a
theorem contain only one geometric relation, the theorem falls into the category
of properties or definitions. Definitions are considered common knowledge and
are automatically invoked and extended by the solver, while properties require
explicit invocation. If the conclusion of a theorem contains only one geometric
relation, the theorem serves as a determination for that particular geometric
relation.

A B C D
a b c

a,b

a,b,c

b,c

A B C D
a b c

a,b

a,b,c

b,c

Fig. 7. Hierarchy of theorems

As previously mentioned, geometric theorems are rules for converting var-
ious geometric knowledge, and these rules exhibit a hierarchical structure, as
depicted in Fig. 7, where each arrow represents a method of theorem definition.
When defining theorems, we can directly combine multiple predicates to create a
determination theorem, as shown in Eq. 8, or we can break it down into several
theorems, as shown in Eq. 9. Different ways of defining theorems can impact
the speed of theorem application in the problem-solving process. Therefore, it is
essential to explore the most suitable method for defining theorems.

16 X. Zhang et al.

A&a&b&c → D (8)

A&a → B,B&b → C,C&c → D (9)

We introduce the concept of the abstract hierarchy of theorems to describe
the level of structure in theorem definitions. The abstract hierarchy of a theorem,
denoted as K, represents the minimum number of theorems required to derive a
higher-level predicate from lower-level predicates. Along the red paths in Fig. 7,
we have KA→B = 1, KA→C = 2, and KA→D = 3.

Theorems are intended to facilitate the solving of problems. We prioritize
theorem definition based on solving time, while temporarily disregarding other
factors such as readability. For search-based problem-solving algorithms, the
solving time T is influenced by the length of the theorem sequence d, the number
of theorems N in theorem library, and the average application time t̄ of a single
theorem. This can be defined more specifically in Eq. 10. Here, K is directly
proportional to d and inversely proportional to N and t̄.

T ∝ f(d,N, t̄) ∝ (N +N2 + · · ·+Nd)t̄ (10)

In our practical observations, we have found that there exists an approxi-
mate inverse relationship between T and K. In the process of defining theorems,
FormalGeo tends to favor higher abstract hierarchy. We leave more detailed
comparative experiments and mechanistic analyses for future work.

4.3 Datasets

Most of the existing datasets for geometry problem-solving suffer from the fol-
lowing issues: 1.Limited data volume or non-open source availability. 2.Lack of
annotations or incomplete and low-quality annotations. 3.Absence of formalaza-
tion theory support, resulting in incoherent and inconsistent formal systems.
4.Low scalability, Defining new predicates and theorems require solver’s code
modifications. 5.Lower difficulty level of the problems. To address the aforemen-
tioned issues, we have annotated formalgeo7k and formalgeo-imo.

Our data is collected from various sources, including Geometry3k [29], GeoQA
[6], GeoQA+ [4], and online resources. We carefully curated, classified, dedupli-
cated, and standardized the problem statements. The creation of the formal-
geo7k involved 16 trained master’s students over a period of around 13 weeks.
The creation of the formalgeo-imo involved 4 trained master’s students over a
period of around 1 week. Excluding the time spent on collaboration and dataset
allocation, annotating datasets took approximately 1000 person-hours.

formalgeo7k comprises 6981 geometric problems that are accompanied by
natural language descriptions, geometric diagrams, formal language annotations,
and solution theorem sequence annotations. A annotated problem is illustrated in
in Fig. 10. The problem-solving process can be represented as a hypertree with
conditions as hypernodes and theorems as hyperedges. The solution theorem

FormalGeo 17

sequence is a path from the root node (known conditions) to a leaf node (the
problem-solving objective). By selecting any intermediate node along this path
as the problem-solving objective, we can generate new problems, allowing us to
expand the problem number to 133,818. formalgeo-imo is constructed with the
same standards but with more challenging problem difficulty.

0 5 10 15 20 25
Problem Level

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
eq

ue
nc

y
(%

)

formalgeo7k

0 5 10 15 20 25
Problem Level

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y
(%

)

formalgeo7k(DA)

10 20 30 40 50 60
Problem Level

0.06

0.07

0.08

0.09

0.10

0.11

Fr
eq

ue
nc

y
(%

)

formalgeo-imo

0 10 20 30 40 50 60
Problem Level

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
eq

ue
nc

y
(%

)

formalgeo-imo(DA)

0 5 10 15 20 25
Problem Level

0

200

400

600

800

1000

Av
er

ag
e

Ti
m

e
(m

s)

formalgeo7k

0 5 10 15 20 25
Problem Level

200

400

600

800

Av
er

ag
e

Ti
m

e
(m

s)

formalgeo7k(DA)

10 20 30 40 50 60
Problem Level

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e

Ti
m

e
(m

s)

formalgeo-imo

0 10 20 30 40 50 60
Problem Level

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e

Ti
m

e
(m

s)

formalgeo-imo(DA)

Fig. 8. Distribution of problem (the top 4). Average Time of interactive verification
(the bottom 4). DA represents data augmentation.

We use the length of theorem sequences required for problem solving as a
rough metric for assessing problem difficulty. All annotated and expanded prob-
lems have been verified by the solver, and their average solution times varying
with problem difficulty also show in the Fig. 8. The number of questions with a
difficulty level of 15 or higher in formalgeo7k is quite small, leading to significant
fluctuations. formalgeo-imo follows the same reasoning. After data augmenta-
tion, datasets exhibit a larger scale of data and a smoother difficulty curve. In
general, more challenging problems require longer solving time.

5 Geometry Problem Solver: FGPS

Guided by GFT, we have constructed a geometric problem solver, FGPS. Any
geometric formal system designed based on GFT and any geometric problem that
adheres to the syntax of formal language can be input into FGPS for verification
and solution.

In this section, we introduce the implementation of the core solving engine.
Detailed descriptions about solver’s structure and other functionalities can be
found in the App. F.

18 X. Zhang et al.

5.1 GPL Executor

The process of geometric problem solving can be represented as a sequence of
theorem applications. Theorems are defined using GPL, and, as a result, the
process of geometric problem solving within the solver is essentially the execu-
tion of GPL. GPL statements can consist of multiple logical conjunction words,
geometric relations, and quantitative relations nested together. The application
process can be divided into 4 steps:

In the GPL parsing phase, the solver expands complex GPL statements into
disjunctive normal form (DNF) using the distributive law. Each simple conjunc-
tion represents a branch of the theorem. This not only meets the requirements
for backward reasoning and facilitates the generation of sub-goals but also speeds
up theorem execution by skipping irrelevant branches.

In the GPL ordering phase, for each branch of the theorem, the solver ad-
justs the positions of geometric relations and quantitative relations within sim-
ple conjunctions according to the commutative law. The guiding principles for
this adjustment are as follows: 1.Transforming relation composition into geo-
metric constraints 2.Moving geometric constraints forward 3.Moving algebraic
constraints backward. This approach not only helps filter out geometric rela-
tion elements that do not comply with the constraints, preventing the explosion
of combinatorics caused by Cartesian product operations, but also reduces the
number for algebraic equation solving, thereby improving theorem application
speed.

In the GPL execution phase, the solver reads geometric and quantitative
relations sequentially and performs relational inference (Eq. 3 ∼ 7) in the order
of their appearance.

The GPL execution process can be illustrated with an example. Suppose
that we have a theorem defined as shown in Eq. 11, which includes 5 geometric
relations R1(v1, v2), R2(v2, v3), R3(v2), R4(v2, v3) and R5(v2) and 1 quantitative
relation RA(v1, v2).

R1&(R2|(∼ R3|RA)&R4&R5) (11)

During the GDL parsing phase, it is expanded into a DNF according to the
distributive law, as shown in Eq. 12. This DNF consists of 3 simple conjunctions,
with each simple conjunction serving as a theorem branch.

R1&R2|R1& ∼ R3&R4&R5|R1&RA&R4&R5 (12)

In the GDL reordering phase, let’s take branch R1&RA&R4&R5 as an ex-
ample. It adjusts the order of its statements according to the commutative law,
resulting in the form shown in Eq. 13.

R1&R5&R4&RA (13)

In the GPL execution phase, the GDL statements are read and executed in
order, and the process is as shown in Eq. 14.

FormalGeo 19

R1&R5&R4&RA → R1,5&R4&RA → R1,5,4&RA → R1,5,4,A (14)

5.2 Minimum Dependency Equations

The known conditions of geometric problems can be categorized into geometric
and quantitative relationships. Quantitative relationships eventually represented
as a set of algebraic equations or inequalities. When performing algebraic con-
straint in the execution of GPL, the satisfaction of algebraic constraint under
the known algebraic equations or inequalities of the problem is checked.

Algebraic constraints can be transformed into algebraic expressions repre-
sented by a, creating the target equation g− a. Among the several known equa-
tionsX in the problem conditions, those relevant to g−a are selected to construct
the target equation group G, which is subsequently solved. If g = 0 is obtained
as a solution, the algebraic constraints are satisfied. Typically, only a few equa-
tions in X are related to g− a, and this subset of equations is referred to as the
minimum dependency equations.

The solving of equations accounts for the majority of the time spent in the
entire process of solving geometric problems. Accelerating the equation solv-
ing process is crucial for enhancing the speed of geometric problem solving. To
address this, we propose a method for constructing the minimum dependency
equations. Without loss of generality, we examine the intermediate process of
constructing G. At time t (t = 1, 2, . . .), Gt contains t equations and m un-
knowns, with the set of unknowns denoted as Mt. We need to select a candidate
equation xt from X to add to Gt in a way that increases the likelihood of ob-
taining a solution for the unknown g. The set of unknowns in xt is represented
as Bt. This process is repeated until |Mt| = t or no new equations can be added.

|Bt ∩Mt| > 0 (15)

min(|Bt −Mt|) (16)

max(|Bt ∩Mt|) (17)

The selection criteria for xt are as follows:
1.Bt must intersect with Mt, as shown in Eq. 15. If they do not intersect, it

implies that xt is unrelated to Gt.
2.Under the condition of satisfying Eq. 15, adding xt should introduce as few

new unknown variables as possible, as depicted in Eq. 16. The closer the number
of t and |Mt| are, the higher the likelihood of solving Gt. In the initial stages of
constructing G, which only contains g − a, M1 − 1 > 1. The number of Added
equation each time is a fixed value 1. If we aim to minimize the gap between t
and |Mt|, we should try to introduce as few new equations when selecting xt.

3.Under the condition of satisfying Eq. 15 and Eq. 16, the equation to be
added should encompass more unknown variables, as demonstrated in Eq. 17.

20 X. Zhang et al.

These additional unknown variables are often associated with other equations
within Gt, providing more choices for simplifying Gt. If there are multiple equa-
tions that satisfy these conditions, we can choose any of them at random.

6 Experiments

We conducted experiments on the formalgeo7k, comparing different search meth-
ods and strategies in terms of problem-solving success rate, solution time, and
the number of steps required for problem-solving.

Forward search (FW) starts from the known conditions of the problem and
continuously apply theorems to derive new conditions until the goal is achieved.
Backward search (BW), on the other hand, begins with the problem-solving goal,
expands it into multiple sub-goals, and repeats this process until all sub-goals
are resolved. A detailed description of the search algorithms can be found in
App. F.

The search-based methods construct a search tree during the problem-solving
process. We have the flexibility to choose various strategies to traverse the search
tree and reach the goal. Breadth-first search (BFS) begins by expanding the
top-level nodes of the search tree and then proceeds layer by layer into the
depth. Depth-first search (DFS) recursively selects nodes from the search tree
from shallow to deep and continues this process. Random search (RS) randomly
selects an expandable node at each stage of expansion. Beam search (BS) selects
k nodes in each stage of expansion and can be viewed as a trade-off between
BFS and RS.

We conducted experiments on 2 Intel i9-10900X, 1 AMD Ryzen 9 5900X,
and 1 AMD Ryzen 9 7950X, running the search algorithms using multiple pro-
cesses while maintaining a CPU utilization rate of 80%. The maximum search
depth was set to 15, and the beam size was set to 20. The total duration of the
experiments was approximately 3 days. When the timeout for each problem was
300 seconds, the best success rate for problem-solving was approximately 30%.
When the timeout for each problem was increased to 600 seconds, the specific
results are as follows.

Table 1. An overview of search results.

method strategy
result (%)

solved unsolved timeout

FW BFS 38.86 7.42 53.72
FW DFS 36.16 9.80 54.05
FW RS 39.71 9.07 51.22
FW BS 25.28 38.72 36.00
BW BFS 35.44 2.68 61.88
BW DFS 33.73 2.42 63.84
BW RS 34.05 2.65 63.30
BW BS 34.39 12.86 52.74

FormalGeo 21

An overview of search-based automated problem-solving results is presented
in Tab. 1. The highest problem-solving success rate was achieved by forward
random search, reaching 39.708%. Most of the remaining problems were due
to timeouts. As timeout settings are extended and computational resources in-
crease, the proportion of timeout problems is expected to decrease. The number
of unsolved problems using beam search was significantly higher compared to
other strategies. This is because when selecting k branches, beam search oc-
casionally discards the correct branch. Other contributing factors may include
code bugs, equation solving timeouts, and the omission of theorems related to
trigonometric.

In accordance with the length of the theorems required for problem-solving,
we roughly categorize the difficulty of the questions into 6 levels, denoted as
l1(length <= 2), l2(3 <= length <= 4), l3(5 <= length <= 6), l4(7 <=
length <= 8), l5(9 <= length <= 10), l6(length >= 11), with corresponding
problem numbers of 2407, 1898, 1247, 824, 313 and 292. The success rates for
solving geometric problems of varying difficulty are presented in Tab. 2. As prob-
lem difficulty increases, the success rate of problem-solving rapidly declines. This
phenomenon can be attributed to the fact that search-based problem-solving
methods exhibit exponential growth in solving time as the length of the the-
orem sequence increases, often resulting in timeouts before achieving the goal.
For problems of lower difficulty, backward search demonstrate a relatively higher
success rate, while forward search outperforms in the case of more challenging
problems.

Table 2. Results of success rates.

method strategy
success rates (%)

total l1 l2 l3 l4 l5 l6
FW BFS 38.86 59.95 38.62 28.55 17.35 8.63 3.77
FW DFS 36.16 55.75 40.04 22.94 12.38 7.03 4.11
FW RS 39.71 59.24 40.04 33.68 16.38 5.43 4.79
FW BS 25.28 46.12 22.60 13.47 5.83 2.88 0.34
BW BFS 35.44 67.22 33.72 11.15 6.67 6.07 1.03
BW DFS 33.73 65.93 30.82 8.90 6.55 5.11 0.68
BW RS 34.05 66.64 31.66 8.66 5.83 4.47 0.68
BW BS 34.39 67.10 31.35 9.46 6.31 5.75 1.03

The efficiency of the problem-solving algorithm can be measured by the
search time and step. The experimental results of search-based automated problem-
solving algorithms on the formalgeo7k are presented in Fig. 9.

In terms of average search time, backward search is slightly better than for-
ward search overall. For solved problems, the search time is roughly proportional
to the difficulty of the problems when problems are of low difficulty. However,
as the difficulty increases, the search time for both forward search and backward
search decreases. On the one hand, this is because there are very few successfully

22 X. Zhang et al.

solved high-difficulty problems, leading to significant statistical errors. On the
other hand, when dividing the difficulty of problems, we only consider the length
of the solution theorem sequence but do not consider the time required for each
theorem execution. The solved high-difficulty problems are precisely those that
require less solution time. For unsolved problems, the search time is roughly
proportional to the difficulty of the problems.

Comparing different search strategies, it can be observed that in the forward
search, BFS has a slightly lower success rate compared to the RS, but it takes
the most time. BS has the lowest success rate but the least time consumption.
For forward search, RS is the optimal strategy as it has the highest success rate
and only slightly higher time consumption than BS that has the lowest success
rate. In backward search, BFS is the optimal strategy, with the highest success
rate and only slightly higher time consumption than DFS.

We observe a significant difference in the solution time of the BS strategy
in backward search for solved and unsolved problems. This difference may be
due to the characteristics of the backward search, where even if possible solu-
tion branches were discarded in previous steps, they may be reconstructed in
later search steps. Therefore, as for BS of backward search, discarding potential
solusation branches does not lead to solution failure but takes longer search time.

1 2 3 4 5 6
Problem Difficulty

50

100

150

200

250

300

Av
er

ag
e

tim
e

(s
)

Time (forward, solved)
FW-BFS
FW-DFS
FW-RS
FW-BS

1 2 3 4 5 6
Problem Difficulty

300

350

400

450

500

550

600

650

700

Av
er

ag
e

tim
e

(s
)

Time (forward, unsolved)
FW-BFS
FW-DFS
FW-RS
FW-BS

1 2 3 4 5 6
Problem Difficulty

0

50

100

150

200

Av
er

ag
e

tim
e

(s
)

Time (backward, solved)
BW-BFS
BW-DFS
BW-RS
BW-BS

1 2 3 4 5 6
Problem Difficulty

350

400

450

500

550

600

Av
er

ag
e

tim
e

(s
)

Time (backward, unsolved)
BW-BFS
BW-DFS
BW-RS
BW-BS

1 2 3 4 5 6
Problem Difficulty

0

100

200

300

400

500

600

700

800

Av
er

ag
e

st
ep

Step (forward, solved)
FW-BFS
FW-DFS
FW-RS
FW-BS

1 2 3 4 5 6
Problem Difficulty

50

100

150

200

250

300

350

Av
er

ag
e

st
ep

Step (forward, unsolved)
FW-BFS
FW-DFS
FW-RS
FW-BS

1 2 3 4 5 6
Problem Difficulty

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er

ag
e

st
ep

Step (backward, solved)
BW-BFS
BW-DFS
BW-RS
BW-BS

1 2 3 4 5 6
Problem Difficulty

0

500

1000

1500

2000

2500

Av
er

ag
e

st
ep

Step (backward, unsolved)
BW-BFS
BW-DFS
BW-RS
BW-BS

Fig. 9. Average search time (the top 4). Average search step (the bottom 4). The raw
data for the charts can be found in App. F

Regarding the search step, forward search statistics are based on the number
of nodes, while backward search statistics are based on the number of super
nodes. Hence, they cannot be directly compared. The search step length in for-
ward search is positively correlated with the difficulty of problems, while in
backward search, it is negatively correlated with problem difficulty. The results

FormalGeo 23

of backward search are counterintuitive, and this could be because, for higher
difficulty problems, the super nodes in backward search may contain more nodes,
leading to increased time spent traversing a single super node and a reduction in
the total number of traversed super nodes. Additionally, it can be observed that
the search step length for unsolved problems in backward search is significantly
higher than the average step length for solved problems. This is because, com-
pared to forward search, backward search is less likely to halt, and it continues
searching even if it misses a potential solution branch.

Comparing different strategies, DFS has the highest search step length, BS
has the lowest search step length, and RS and BFS strategies have approximately
the same average step length. For forward search, RS strategy is still the optimal
strategy because it has the highest success rate and its search step length is only
slightly higher than BS. Backward search does not exhibit a significantly superior
strategy.

7 Conclusion

We have introduced GFT, which includes geometry ontology and geometry rep-
resentation theory, to guide the formalization of geometric problems. Building
upon GFT, we have developed the geometric formal system FormalGeo and
constructed the solver FGPS. Furthermore, we have annotated the geometric
problem-solving datasets, formalgeo7k and formalgeo-imo. Experiments have
demonstrated the correctness and utility of GFT. We have also analyzed the
success rate and efficiency of the solver’s automatic problem-solving algorithm.

In the future, we plan to enhance GFT to make it more comprehensive and
endowed with stronger representational capabilities. We also intend to further
improve FormalGeo by expanding the types of predicates and theorems, as well
as annotating formalgeo-imo datasets. Additionally, we aim to apply deep learn-
ing techniques to search tree pruning for the automatic solving of IMO-level
geometric problems.

Acknowledgement

This research was supported by NSFC Grant.12071282.

Contributions

Xiaokai Zhang: Conceptualization, Methodology, Coding, Dataset annotation,
Writing – original draft & review & editing.Na Zhu: Conceptualization, Method-
ology, Dataset annotation, Writing – review & editing. Yiming He, Jia Zou:
Conceptualization, Methodology, Dataset annotation. Qike Huang, Xiaoxiao
Jin, Yanjun Guo, Chenyang Mao, Zhe Zhu, Dengfeng Yue, Fangzhen
Zhu, Yang Li, Yifan Wang, Yiwen Huang, Runan Wang, Cheng Qin:

24 X. Zhang et al.

Dataset annotation. Zhenbing Zeng, Shaorong Xie, Xiangfeng Luo: Writ-
ing – review. Tuo Leng: Supervision, Funding acquisition, Conceptualization,
Methodology, Writing – review & editing.

References

1. Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Synthesis of geometry
proof problems. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 28 (2014)

2. Alvin, C., Gulwani, S., Majumdar, R., Mukhopadhyay, S.: Synthesis of solutions for
shaded area geometry problems. In: The Thirtieth International Flairs Conference
(2017)

3. Buchberger, B.: Applications of gröbner bases in non-linear computational geom-
etry. Mathematical aspects of scientific software pp. 59–87 (1988)

4. Cao, J., Xiao, J.: An augmented benchmark dataset for geometric question answer-
ing through dual parallel text encoding. In: Proceedings of the 29th International
Conference on Computational Linguistics. pp. 1511–1520 (2022)

5. Chen, J., Li, T., Qin, J., Lu, P., Lin, L., Chen, C., Liang, X.: Unigeo: Unify-
ing geometry logical reasoning via reformulating mathematical expression. arXiv
preprint arXiv:2212.02746 (2022)

6. Chen, J., Tang, J., Qin, J., Liang, X., Liu, L., Xing, E., Lin, L.: Geoqa: A ge-
ometric question answering benchmark towards multimodal numerical reasoning.
In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021.
pp. 513–523 (2021)

7. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated geometry theorem proving by vec-
tor calculation. In: Proceedings of the 1993 international symposium on Symbolic
and algebraic computation. pp. 284–291 (1993)

8. Chou, S.C., Gao, X.S., Zhang, J.Z.: A collection of 110 geometry theorems and their
machine produced proofs using full-angles. Washington State University, Washing-
ton (1994)

9. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of traditional proofs in
solid geometry. Journal of Automated Reasoning 14(2), 257–291 (1995)

10. Chou, S.C., Gao, X.S., Zhang, J.Z.: An introduction to geometry expert. In: CADE.
vol. 1104, pp. 235–239 (1996)

11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition–preliminary report. ACM SIGSAM Bulletin 8(3), 80–90 (1974)

12. Cunningham, G., Bunescu, R., Juedes, D.: Towards autoformalization of mathe-
matics and code correctness: Experiments with elementary proofs. In: Proceedings
of the 1st Workshop on Mathematical Natural Language Processing (MathNLP).
pp. 25–32 (2022)

13. Daniel, S., Leonardo, d.M., Kevin, B., Reid, B., Percy, L., Sarah, L., Freek, W.:
Imo grand challenge (2019), https://imo-grand-challenge.github.io/

14. Davies, A., Veličković, P., Buesing, L., Blackwell, S., Zheng, D., Tomašev, N.,
Tanburn, R., Battaglia, P., Blundell, C., Juhász, A., et al.: Advancing mathematics
by guiding human intuition with ai. Nature 600(7887), 70–74 (2021)

15. Gan, W., Yu, X.: Automatic understanding and formalization of natural language
geometry problems using syntax-semantics models. International Journal of Inno-
vative Computing, Information and Control 14(1), 83–98 (2018)

https://imo-grand-challenge.github.io/

FormalGeo 25

16. Gan, W., Yu, X., Zhang, T., Wang, M.: Automatically proving plane geometry
theorems stated by text and diagram. International Journal of Pattern Recognition
and Artificial Intelligence 33(07), 1940003 (2019)

17. Gao, X.S., Chou, S.C.: On the dimension of an arbitrary ascending chain. CHI-
NESE SCIENCE BULLETIN-ENGLISH EDITION- 38, 799–799 (1993)

18. Gelernter, H.L.: Realization of a geometry theorem proving machine. In: IFIP
congress. pp. 273–281 (1959)

19. Hao, Y., Zhang, M., Yin, F., Huang, L.L.: Pgdp5k: A diagram parsing dataset
for plane geometry problems. In: 2022 26th International Conference on Pattern
Recognition (ICPR). pp. 1763–1769. IEEE (2022)

20. Huang, L., Yu, X., He, B.: A novel geometry problem understanding method based
on uniform vectorized syntax-semantics model. In: 2022 International Conference
on Intelligent Education and Intelligent Research (IEIR). pp. 78–85. IEEE (2022)

21. Jian, P., Guo, F., Wang, Y., Li, Y.: Solving geometry problems via feature learning
and contrastive learning of multimodal data. CMES-COMPUTER MODELING IN
ENGINEERING & SCIENCES 136(2), 1707–1728 (2023)

22. Jiang, A.Q., Li, W., Tworkowski, S., Czechowski, K., Odrzygóźdź, T., Mi loś, P.,
Wu, Y., Jamnik, M.: Thor: Wielding hammers to integrate language models and
automated theorem provers. Advances in Neural Information Processing Systems
35, 8360–8373 (2022)

23. Jiang, A.Q., Welleck, S., Zhou, J.P., Lacroix, T., Liu, J., Li, W., Jamnik, M., Lam-
ple, G., Wu, Y.: Draft, sketch, and prove: Guiding formal theorem provers with
informal proofs. In: The Eleventh International Conference on Learning Represen-
tations (2022)

24. Jingzhong, Z., Yongbin, L.: Automatic theorem proving for three decades. Journal
of Systems Science and Mathematical Sciences 29(9), 1155 (2009)

25. Kovács, Z., Yu, J.H.: Automated discovery of geometrical theorems in geogebra.
arXiv preprint arXiv:2202.04627 (2022)

26. Lample, G., Lacroix, T., Lachaux, M.A., Rodriguez, A., Hayat, A., Lavril, T.,
Ebner, G., Martinet, X.: Hypertree proof search for neural theorem proving. Ad-
vances in Neural Information Processing Systems 35, 26337–26349 (2022)

27. Li, H.: Symbolic computation in the homogeneous geometric model with clifford
algebra. In: Proceedings of the 2004 international symposium on Symbolic and
algebraic computation. pp. 221–228 (2004)

28. Littman, M.L., Ajunwa, I., Berger, G., Boutilier, C., Currie, M., Doshi-Velez, F.,
Hadfield, G., Horowitz, M.C., Isbell, C., Kitano, H., et al.: Gathering strength,
gathering storms: The one hundred year study on artificial intelligence (ai100)
2021 study panel report. arXiv preprint arXiv:2210.15767 (2022)

29. Lu, P., Gong, R., Jiang, S., Qiu, L., Huang, S., Liang, X., Zhu, S.c.: Inter-gps: Inter-
pretable geometry problem solving with formal language and symbolic reasoning.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). pp. 6774–6786 (2021)

30. Lu, Y.: Practical automated reasoning on inequalities: Generic programs for in-
equality proving and discovering. Proceedings of the Third Asian Technology Con-
fer ence in Mathematics. Tsukuba, Japan pp. 24–35 (1998)

31. Mishra, C., Moulik, S.R., Sarkar, R.: Mathematical conjecture generation using
machine intelligence. arXiv preprint arXiv:2306.07277 (2023)

32. Nevins, A.J.: Plane geometry theorem proving using forward chaining. Artificial
Intelligence 6(1), 1–23 (1975)

26 X. Zhang et al.

33. Ning, M., Wang, Q.F., Huang, K., Huang, X.: A symbolic character-aware model
for solving geometry problems (2023)

34. Peng, S., Fu, D., Liang, Y., Gao, L., Tang, Z.: Geodrl: A self-learning framework for
geometry problem solving using reinforcement learning in deductive reasoning. In:
Findings of the Association for Computational Linguistics: ACL 2023. pp. 13468–
13480 (2023)

35. Polu, S., Han, J.M., Zheng, K., Baksys, M., Babuschkin, I., Sutskever, I.: For-
mal mathematics statement curriculum learning. In: The Eleventh International
Conference on Learning Representations (2022)

36. Raayoni, G., Gottlieb, S., Manor, Y., Pisha, G., Harris, Y., Mendlovic, U., Haviv,
D., Hadad, Y., Kaminer, I.: Generating conjectures on fundamental constants with
the ramanujan machine. Nature 590(7844), 67–73 (2021)

37. Rao, Y., Xie, L., Guan, H., Li, J., Zhou, Q.: A method for expanding predicates and
rules in automated geometry reasoning system. Mathematics 10(7), 1177 (2022)

38. Sachan, M., Dubey, A., Hovy, E.H., Mitchell, T.M., Roth, D., Xing, E.P.: Discourse
in multimedia: A case study in extracting geometry knowledge from textbooks.
Computational Linguistics 45(4), 627–665 (2020)

39. Sachan, M., Dubey, K., Xing, E.: From textbooks to knowledge: A case study in
harvesting axiomatic knowledge from textbooks to solve geometry problems. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. pp. 773–784 (2017)

40. Sachan, M., Xing, E.: Learning to solve geometry problems from natural language
demonstrations in textbooks. In: Proceedings of the 6th Joint Conference on Lex-
ical and Computational Semantics (SEM 2017). pp. 251–261 (2017)

41. Seo, M.J., Hajishirzi, H., Farhadi, A., Etzioni, O.: Diagram understanding in geom-
etry questions. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 28 (2014)

42. Seo, M., Hajishirzi, H., Farhadi, A., Etzioni, O., Malcolm, C.: Solving geometry
problems: Combining text and diagram interpretation. In: Proceedings of the 2015
conference on empirical methods in natural language processing. pp. 1466–1476
(2015)

43. Tsai, S.h., Liang, C.C., Wang, H.M., Su, K.Y.: Sequence to general tree:
Knowledge-guided geometry word problem solving. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 2: Short
Papers). pp. 964–972 (2021)

44. Wang, D.: Geother: A geometry theorem prover. In: Automated Deduction—Cade-
13: 13th International Conference on Automated Deduction New Brunswick, NJ,
USA, July 30–August 3, 1996 Proceedings. pp. 166–170. Springer (2005)

45. Wilson, S., Fleuriot, J.D.: Geometry explorer: A tool for generating diagrammatic
full-angle method proofs. In: Automated deduction in geometry: extended ab-
stracts. pp. 144–150 (2006)

46. Wong, M.F., Qi, X., Tan, C.W.: Euclidnet: Deep visual reasoning for constructible
problems in geometry. In: 2nd MATH-AI Workshop at NeurIPS’22: Toward
Human-Level Mathematical Reasoning (2022)

47. Wu, W.T.: On the decision problem and the mechanization of theorem proving in
elementary geometry. Scientia Sinica 21, 157–179 (1978)

48. Wu, Y., Jiang, A.Q., Li, W., Rabe, M., Staats, C., Jamnik, M., Szegedy, C.: Aut-
oformalization with large language models. Advances in Neural Information Pro-
cessing Systems 35, 32353–32368 (2022)

FormalGeo 27

49. XTXMarkets: Artificial intelligence mathematical olympiad prize (aimo prize)
(2023), https://aimoprize.com/

50. Yang, L., Zhang, J., Li, C.: A prover for parallel numerical verification of a class
of constructive geometry theorems. In: Proc. IWMM. vol. 92, pp. 244–250 (1992)

51. Yang, L., Gao, X.S., Chou, S.C., Zhang, J.Z.: Automated production of readable
proofs for theorems in non-euclidean geometries. In: Automated Deduction in Ge-
ometry: International Workshop on Automated Deduction in Geometry Toulouse,
France, September 27–29, 1996 Selected Papers 1. pp. 171–188. Springer (1997)

52. Ye, Z., Chou, S.C., Gao, X.S.: An introduction to java geometry expert. In: Auto-
mated Deduction in Geometry: 7th International Workshop, ADG 2008, Shanghai,
China, September 22-24, 2008. Revised Papers 7. pp. 189–195. Springer (2011)

53. Yu, W., Wang, M., Wang, X., Zhou, X., Zha, Y., Zhang, Y., Miao, S., Liu, J.: Geore:
A relation extraction dataset for chinese geometry problems. In: 35th Conference
on Neural Information Processing Systems (NeurIPS 2021) Workshop on Math AI
for Education (MATHAI4ED) (2021)

54. Yu, X., Gan, W., Wang, M.: Understanding explicit arithmetic word problems and
explicit plane geometry problems using syntax-semantics models. In: 2017 Inter-
national Conference on Asian Language Processing (IALP). pp. 247–251. IEEE
(2017)

55. Yu, X., Wang, M., Gan, W., He, B., Ye, N.: A framework for solving explicit
arithmetic word problems and proving plane geometry theorems. International
Journal of Pattern Recognition and Artificial Intelligence 33(07), 1940005 (2019)

56. Zhang, J.Z., Chou, S.C., Gao, X.S.: Automated production of traditional proofs for
theorems in euclidean geometry i. the hilbert intersection point theorems. Annals
of Mathematics and Artificial Intelligence 13(1-2), 109–137 (1995)

57. Zhang, M.L., Yin, F., Hao, Y.H., Liu, C.L.: Plane geometry diagram
parsing. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-22. pp. 1636–
1643. International Joint Conferences on Artificial Intelligence Organization
(7 2022). https://doi.org/10.24963/ijcai.2022/228, https://doi.org/10.24963/

ijcai.2022/228, main Track
58. Zhang, M.L., Yin, F., Liu, C.L.: A multi-modal neural geometric solver with textual

clauses parsed from diagram. arXiv preprint arXiv:2302.11097 (2023)
59. Zheng, K., Han, J.M., Polu, S.: minif2f: a cross-system benchmark for formal

olympiad-level mathematics. In: International Conference on Learning Represen-
tations (2022)

60. Zhong, X., Fu, H., Yu, Y., Liu, Y.: Interactive learning environment based on
knowledge network of geometry problems. In: 2015 10th International Conference
on Computer Science & Education (ICCSE). pp. 53–58. IEEE (2015)

61. Zhou, W., Xu, R., Guan, H., Zhao, J., Rao, Y.: Research on geometry problem
text understanding based on bidirectional lstm-crf. In: 2022 9th International Con-
ference on Digital Home (ICDH). pp. 121–127. IEEE (2022)

https://aimoprize.com/
https://doi.org/10.24963/ijcai.2022/228
https://doi.org/10.24963/ijcai.2022/228
https://doi.org/10.24963/ijcai.2022/228

28 X. Zhang et al.

A Examples

Guided by the GFT, we have developed the geometry formal system, Formal-
Geo. In this section, we provide several examples related to the design of For-
malGeo predicates and theorems to help readers better understand the GFT.
App. A.1 and App. A.2 correspond to the application of geometry ontology,
while App. A.3, App. A.4, and App. A.5 correspond to the application of geom-
etry representation theory.

A.1 Geometry ontology domain

The geometry ontology domain comprehensively summarizes and categorizes
geometric knowledge. It is divided into 4 quadrants along 2 dimensions: dynamic
versus static, and number versus shape. Each quadrant encompasses mappings
for axiomatic system, formal system, and solver, as depicted in Tab. 3.

Table 3. Examples of geometry ontology domain.

Quadrants Tiers Examples

1
Static
Shape

axiomatic
system

Triangle ABC is an equilateral triangle.

formal
system

EquilateralTriangle(ABC)

solver RET = {ABC,BCA,CAB}

2
Static

Number

axiomatic
system

The length of line AB is equal to the length of line CD.

formal
system

Equal(LengthOfLine(AB),LengthOfLine(CD))

solver llAB − llCD = 0

3
Dynamic
Number

axiomatic
system

A triangle with two equal legs is an isosceles triangle.

formal
system

Triangle(ABC)&
Equal(LengthOfLine(AB),LengthOfLine(AC))→
IsoscelesTriangle(ABC)

solver GPL defined in Eq. 5

4
Dynamic

Shape

axiomatic
system

If AB is parallel to CD, and CD is parallel to EF, then
AB is parallel to EF.

formal
system

Parallel(AB,CD)&Parallel(CD,EF)→Parallel(AB,EF)

solver GPL defined in Eq. 3 and Eq. 4

A.2 Geometry knowledge graph

The geometry knowledge graph is an extension of the geometry ontology domain,
which structurally presents the design process of predicate definition language

FormalGeo 29

and theorem definition language, preventing omissions or redundancies. Formal-
Geo comprises n predicates and m theorems, and its geometry knowledge graph
is illustrated in Fig. 12.

A.3 Predicate definition language

FormalGeo comprises 88 predicates, including 25 fundamental predicates (Tab. 6)
built into the solver and 12 entities (Tab. 7), 30 entity relationships (Tab. 8),
and 21 attributions (Tab. 9) defined using the predicate definition language. The
structured relationships between predicates are depicted in Fig. 12.

The detailed statements for defining a predicate is as shown in the Tab. 4,
including the predicate name and point variable declaration, validity check dec-
laration, multiple representations, and automatic expansion. Additionally, when
defining attributes, it also includes symbolic form declaration.

Table 4. Detailed statement examples for defining a predicate.

name item content

IsMidpointOfLine(M,AB)

ee check
Point(M)
Line(AB)
Collinear(AMB)

fv check M,AB
multi M,BA

extend Equal(LengthOfLine(AM),LengthOfLine(MB))

LengthOfLine(AB)
ee check Line(AB)

sym ll
multi BA

A.4 Theorem definition language

Theorems are defined using the GPL, comprising two parts: premises and con-
clusions, as shown in the Tab. 5. FormalGeo encompasses 196 theorems, and
their structured relationships are illustrated in Fig. 12.

Table 5. Detailed statement examples for defining a theorem.

name item content

midpoint of line
judgment(M,AB)

premise
Collinear(AMB)&
Equal(LengthOfLine(AM),LengthOfLine(MB))

conclusion IsMidpointOfLine(M,AB)

vertical angle
(AOC,BOD)

premise
Collinear(AOB)&Collinear(COD)&
Angle(AOC)&Angle(BOD)

conclusion Equal(MeasureOfAngle(AOC),MeasureOfAngle(BOD))

30 X. Zhang et al.

A.5 Condition declaration language

We can use CDL to transform the description of geometric problems into a
formal language. CDL consists of three main parts: construction statements,
condition statements, and goal statements. An example of a transformed problem
is illustrated in Fig. 10, with theorem seqs denoting the annotated problem-
solving theorem sequence.

We abstract the process of geometry problem-solving as a hyper tree, where
tree root nodes represent known conditions (labeled in green in Fig. 10), tree
hyperedges represent geometric theorems, and the problem-solving process is a
path from the root node to the target leaf node (labeled in yellow in Fig. 10).

A O F B

E

G

D

C

A O F B

E

G

D

C

△ABC is an isosceles △, F is the midpoint of

OB, O is the center of the circle O, OG = GD.

To prove: quadrilateral CEGD is a parallelogram.

condition_cdl

IsMidpointOfLine(F,OB)

IsCentreOfCircle(O,O)

IsoscelesTriangle(ABC)

Equal(LengthOfLine(OG),LengthOfLine(GD))

goal_cdl

Relation(Parallelogram(CEGD))

problem_answer

Parallelogram(CEGD)

theorem_seqs

radius_of_circle_property_length_equal(1,OB,O)

radius_of_circle_property_length_equal(1,OD,O)

isosceles_triangle_judgment_line_equal(1,OBD)

isosceles_triangle_property_angle_equal(1,ABC)

isosceles_triangle_property_angle_equal(1,OBD)

parallel_judgment_corresponding_angle(2,DG,CE,B)

midsegment_of_triangle_judgment_midpoint(1,FG,OBD)

midsegment_of_triangle_property_parallel(1,FG,OBD)

parallel_property_collinear_extend(2,DB,GF,C)

parallel_property_collinear_extend(2,FG,DC,E)

parallelogram_judgment_parallel_and_parallel(1,CEGD)

IsMidpointOfLine(F,OB)

extended

Equal(LengthOfLine(OF),LengthOfLine(FB))

IsMidsegmentOfTriangle(FG,OBD)

ParallelBetweenLine(FG,BD)

Equal(LengthOfLine(OG),LengthOfLine(GD))

midsegment_of_triangle_judgment_midpoint(1,FG,OBD)

midsegment_of_triangle_property_parallel(1,FG,OBD)

extended
ParallelBetweenLine(DB,GF)

parallel_property_collinear_extend(1,DB,GF,C)

ParallelBetweenLine(CD,GF)
extended

ParallelBetweenLine(FG,DC)

parallel_property_collinear_extend(2,FG,DC,E)

ParallelBetweenLine(GE,DC) ParallelBetweenLine(CD,EG)
extended

IsCentreOfCircle(O,O)

radius_of_circle_property_length_equal(1,OD,O)

Equal(LengthOfLine(OD),RadiusOfCircle(O)) Equal(LengthOfLine(OB),RadiusOfCircle(O))

radius_of_circle_property_length_equal(1,OB,O)

IsoscelesTriangle(OBD)

isosceles_triangle_judgment_line_equal(1,OBD)

Equal(MeasureOfAngle(ABC),MeasureOfAngle(BDO))

isosceles_triangle_property_angle_equal(1,OBD)

IsoscelesTriangle(ABC)

Equal(MeasureOfAngle(ABC),MeasureOfAngle(DCE))

isosceles_triangle_property_angle_equal(1,ABC)

parallel_judgment_corresponding_angle(1,DG,CE,B)

ParallelBetweenLine(DG,CE)

ParallelBetweenLine(EC,GD)

extended

Parallelogram(CEGD)

parallelogram_judgment_parallel_and_parallel(1,CEGD)

construction_cdl

Shape(CE,ODE,DC)

Shape(ODE,EG,GD)

Shape(EA,AO,OG,GE)

Shape(GO,OF,FG)

Shape(DG,GF,FB,BD)

Shape(OBD,DB)

Collinear(CEA)

Collinear(CDB)

Collinear(AOFB)

Collinear(EGF)

Collinear(OGD)

Cocircular(O,BDE)

Fig. 10. An example of annotated problem and solution hypertree. For layout consid-
erations, hypertree in this image omits many details. The original hypertree generated
by the solver during the problem-solving process can be seen in Fig. 11.

FormalGeo 31

Fig. 11. The original hypertree

32 X. Zhang et al.

Parallelogram

RightTriangle

definition

equilateral_triangle_judgment_isosceles_and_isosceles

equilateral_triangle_property_angle

definition

isosceles_triangle_judgment_line_equal

isosceles_triangle_judgment_angle_equal

isosceles_triangle_property_angle_equal

isosceles_triangle_property_line_coincidence

definition

definition

definition

definition

definition

definition

definition

median_of_triangle_judgment

altitude_of_triangle_judgment

midsegment_of_triangle_judgment_midpoint

midsegment_of_triangle_judgment_parallel

midsegment_of_triangle_property_parallel

midsegment_of_triangle_property_length

circumcenter_of_triangle_judgment_intersection

circumcenter_of_triangle_property_intersection

incenter_of_triangle_judgment_intersection

centroid_of_triangle_judgment_intersection

centroid_of_triangle_property_intersection

centroid_of_triangle_property_line_ratio

orthocenter_of_triangle_judgment_intersection

orthocenter_of_triangle_property_intersection

orthocenter_of_triangle_property_angle

definition

definition

isosceles_right_triangle_judgment_isosceles_and_right

right_triangle_judgment_angle

right_triangle_judgment_pythagorean_inverse

isosceles_right_triangle_property_angle

right_triangle_property_pythagorean

right_triangle_property_length_of_median

tangent_of_circle_judgment_perpendicular

definition

Ratio, RatioOfMirror

definition

definition

(mirror_)congruent_triangle_judgment_sss

(mirror_)congruent_triangle_j(mirror_)udgment_sas

(mirror_)congruent_triangle_judgment_aas

(mirror_)congruent_triangle_judgment_hl

(mirror_)congruent_triangle_property_line_equal

(mirror_)congruent_triangle_property_angle_equal

(mirror_)congruent_triangle_property_perimeter_equal

(mirror_)congruent_triangle_property_area_equal

(mirror_)congruent_triangle_property_exchange

(mirror_)similar_triangle_judgment_sss

(mirror_)similar_triangle_judgment_sas

(mirror_)similar_triangle_judgment_aa

(mirror_)similar_triangle_judgment_hl

(mirror_)similar_triangle_property_ratio

(mirror_)similar_triangle_property_line_ratio

(mirror_)similar_triangle_property_angle_equal

(mirror_)similar_triangle_property_perimeter_ratio

(mirror_)similar_triangle_property_area_square_ratio

Perimeter, Area, Height

CongruentBetweenTriangle

MirrorCongruentBetweenTriangle

SimilarBetweenTriangle

MirrorSimilarBetweenTriangle

Triangle

IsoscelesTriangle

IsoscelesRightTriangle

EquilateralTriangle

triangle_property_angle_sum

sine_theorem

cosine_theorem

triangle_perimeter_formula

triangle_area_formula_common

triangle_area_formula_sine

IsMedianOfTriangle

IsAltitudeOfTriangle

IsMidsegmentOfTriangle

IsCircumcenterOfTriangle

IsIncenterOfTriangle

IsCentroidOfTriangle

IsOrthocenterOfTriangle

Angle

Measure

Line

Length

IsMidpointOfLine

ParallelBetweenLine

PerpendicularBetweenLine

IsPerpendicularBisectorOfLine

IsBisectorOfAngle

definition

definition

definition

definition

definition

line_addition

angle_addition

flat_angle

adjacent_complementary_angle

round_angle

vertical_angle

2.midpoint_of_line_judgment

parallel_judgment_corresponding_angle

parallel_judgment_alternate_interior_angle

parallel_judgment_ipsilateral_internal_angle

parallel_judgment_par_par

parallel_judgment_per_per

parallel_property_collinear_extend

parallel_property_corresponding_angle

parallel_property_alternate_interior_angle

parallel_property_ipsilateral_internal_angle

12.parallel_property_par_per

perpendicular_judgment_angle

perpendicular_bisector_judgment_per_and_mid

perpendicular_bisector_judgment_distance_equal

perpendicular_bisector_judgment_per_and_bisect

perpendicular_bisector_property_bisector

bisector_of_angle_judgment_angle_equal

bisector_of_angle_property_distance_equal

bisector_of_angle_property_line_ratio

bisector_of_angle_property_length_formula

Arc

Cocircular

Collinear

Shape

Polygon

Circle

circle_property_length_of_radius_and_diameter

circle_property_circular_power_chord_and_chord

circle_property_circular_power_tangent_and_segment_line

circle_property_circular_power_segment_and_segment_line

circle_property_circular_power_tangent_and_segment_angle

circle_property_circular_power_segment_and_segment_angle

circle_property_chord_perpendicular_bisect_chord

circle_property_chord_perpendicular_bisect_arc

circle_property_angle_of_osculation

circle_perimeter_formula

circle_area_formula

radius_of_circle_property_length_equal

Perimeter, Area, Radius, Diameter

Length, Measure, PerimeterOfSector, AreaOfSector

round_arc

arc_addition_length

arc_addition_measure

arc_property_center_angle

arc_property_circumference_angle_external

arc_property_circumference_angle_internal

arc_length_formula

sector_perimeter_formula

sector_area_formula

CongruentBetweenArc

SimilarBetweenArc

definition

definition

congruent_arc_judgment_length_equal

congruent_arc_judgment_measure_equal

congruent_arc_judgment_chord_equal

congruent_arc_property_length_equal

congruent_arc_property_measure_equal

congruent_arc_property_chord_equal

similar_arc_judgment_cocircular

similar_arc_property_ratio

similar_arc_property_length_ratio

similar_arc_property_measure_ratio

similar_arc_property_chord_ratio

IsMidpointOfArc

Ratio

definition

definition

tangent_of_circle_property_perpendicular

tangent_of_circle_property_length_equal

diameter_of_circle_judgment_pass_centre

diameter_of_circle_judgment_length_equal

diameter_of_circle_judgment_right_angle

diameter_of_circle_property_length_equal

diameter_of_circle_property_right_angle

definition

IsTangentOfCircle

IsDiameterOfCircle

IsCentreOfCircle

quadrilateral_property_angle_sum

quadrilateral_perimeter_formula

Perimeter, Area, Height

IsAltitudeOfQuadrilateral

IsMidsegmentOfQuadrilateral

IsCircumcenterOfQuadrilateral

IsIncenterOfQuadrilateral

definition

definition

definition

definition

altitude_of_quadrilateral_judgment

altitude_of_quadrilateral_judgment_left_vertex

altitude_of_quadrilateral_judgment_right_vertex

altitude_of_quadrilateral_judgment_diagonal

midsegment_of_quadrilateral_judgment_midpoint

midsegment_of_quadrilateral_judgment_parallel

midsegment_of_quadrilateral_property_length

midsegment_of_quadrilateral_property_parallel

circumcenter_of_quadrilateral_property_intersection

CongruentBetweenQuadrilateral

MirrorCongruentBetweenQuadrilateral

SimilarBetweenQuadrilateral

MirrorSimilarBetweenQuadrilateral

Ratio, RatioOfMirror

(mirror_)congruent_quadrilateral_property_line_equal

(mirror_)congruent_quadrilateral_property_angle_equal

(mirror_)congruent_quadrilateral_property_perimeter_equal

(mirror_)congruent_quadrilateral_property_area_equal

(mirror_)congruent_quadrilateral_property_exchange

(mirror_)similar_quadrilateral_property_ratio

(mirror_)similar_quadrilateral_property_line_ratio

(mirror_)similar_quadrilateral_property_angle_equal

(mirror_)similar_quadrilateral_property_perimeter_ratio

(mirror_)similar_quadrilateral_property_area_square_ratio

Quadrilateral

Kite

definition

kite_judgment_equal_and_equal

kite_property_diagonal_perpendicular_bisection

kite_property_opposite_angle_equal

kite_area_formula_diagonal

kite_area_formula_sine

IsoscelesTrapezoid

Trapezoid

definition

trapezoid_judgment_parallel

trapezoid_area_formula

definition

definition

isosceles_trapezoid_judgment_line_equal

isosceles_trapezoid_judgment_angle_equal

isosceles_trapezoid_judgment_diagonal_equal

isosceles_trapezoid_property_angle_equal

isosceles_trapezoid_property_diagonal_equal

right_trapezoid_judgment_right_angle

definition

rhombus_judgment_parallelogram_and_kite

right_trapezoid_area_formular

Rectangle

Square

Rhombus

definition

definition

definition

square_judgment_rhombus_and_rectangle

rectangle_judgment_right_angle

rectangle_judgment_diagonal_equal

parallelogram_judgment_parallel_and_parallel

parallelogram_judgment_parallel_and_equal

parallelogram_judgment_equal_and_equal

parallelogram_judgment_angle_and_angle

parallelogram_judgment_diagonal_bisection

parallelogram_property_opposite_line_equal

parallelogram_property_opposite_angle_equal

parallelogram_property_diagonal_bisection

parallelogram_area_formula_common

parallelogram_area_formula_sine

rectangle_property_diagonal_equal

RightTrapezoid

Fig. 12. Geometry knowledge graph of FormalGeo

FormalGeo 33

Table 6. Predicates built into the solver.

id type name examples

1 Construction Shape Shape(AB,BC,CA)
2 Construction Collinear Collinear(ABCD)
3 Construction Cocircular Cocircular(O,ABC)
4 BasicEntity Point Point(A)
5 BasicEntity Line Line(AB)
6 BasicEntity Arc Arc(OAB)
7 BasicEntity Angle Angle(ABC)
8 BasicEntity Polygon Polygon(ABCD)
9 BasicEntity Circle Circle(O)
10 Algebra Equal Equal(a,b)
11 Algebra Equation Equation(a-b)
12 Attribution Free Free(x)
13 Operation Add Equal(Add(a,b,c),1)
14 Operation Sub Equal(Sub(a,b),1)
15 Operation Mul Equal(Mul(a,b,c),1)
16 Operation Div Equal(Div(a,b),1)
17 Operation Pow Equal(Pow(a,b),1)
18 Operation Mod Equal(Mod(a,b),1)
19 Operation Sqrt Equal(Sqrt(a),1)
20 Operation Sin Equal(Sin(a),1/2)
21 Operation Cos Equal(Cos(a),1/2)
22 Operation Tan Equal(Tan(a),1)
23 Target Value Value(a)
24 Target Equal Equal(a,b)
25 Target Relation Relation(RightTriangle(ABC))

Table 7. Entities defined using the predicate definition language.

id type examples

26 Entity RightTriangle(ABC)
27 Entity IsoscelesTriangle(ABC)
28 Entity IsoscelesRightTriangle(ABC)
29 Entity EquilateralTriangle(ABC)
30 Entity Kite(ABCD)
31 Entity Parallelogram(ABCD)
32 Entity Rhombus(ABCD)
33 Entity Rectangle(ABCD)
34 Entity Square(ABCD)
35 Entity Trapezoid(ABCD)
36 Entity IsoscelesTrapezoid(ABCD)
37 Entity RightTrapezoid(ABCD)

34 X. Zhang et al.

Table 8. Relations defined using the predicate definition language.

id type examples

38 Relation IsMidpointOfLine(M,AB)
39 Relation IsMidpointOfArc(M,OAB)
40 Relation ParallelBetweenLine(AB,CD)
41 Relation PerpendicularBetweenLine(AC,BC)
42 Relation IsPerpendicularBisectorOfLine(AB,CD)
43 Relation IsBisectorOfAngle(BD,ABC)
44 Relation IsMedianOfTriangle(AD,ABC)
45 Relation IsAltitudeOfTriangle(AD,ABC)
46 Relation IsMidsegmentOfTriangle(DE,ABC)
47 Relation IsCircumcenterOfTriangle(O,ABC)
48 Relation IsIncenterOfTriangle(O,ABC)
49 Relation IsCentroidOfTriangle(O,ABC)
50 Relation IsOrthocenterOfTriangle(O,ABC)
51 Relation CongruentBetweenTriangle(ABC,DEF)
52 Relation MirrorCongruentBetweenTriangle(ABC,DEF)
53 Relation SimilarBetweenTriangle(ABC,DEF)
54 Relation MirrorSimilarBetweenTriangle(ABC,DEF)
55 Relation IsAltitudeOfQuadrilateral(EF,ABCD)
56 Relation IsMidsegmentOfQuadrilateral(EF,ABCD)
57 Relation IsCircumcenterOfQuadrilateral(O,ABCD)
58 Relation IsIncenterOfQuadrilateral(O,ABCD)
59 Relation CongruentBetweenQuadrilateral(ABCD,EFGH)
60 Relation MirrorCongruentBetweenQuadrilateral(ABCD,EFGH)
61 Relation SimilarBetweenQuadrilateral(ABCD,EFGH)
62 Relation MirrorSimilarBetweenQuadrilateral(ABCD,EFGH)
63 Relation CongruentBetweenArc(OAB,OCD)
64 Relation SimilarBetweenArc(OAB,OCD)
65 Relation IsDiameterOfCircle(AB,O)
66 Relation IsTangentOfCircle(PA,O)
67 Relation IsCentreOfCircle(P,O)

FormalGeo 35

Table 9. Attributions defined using the predicate definition language.

id type examples

68 Attribution LengthOfLine(AB)
69 Attribution MeasureOfAngle(ABC)
70 Attribution PerimeterOfTriangle(ABC)
71 Attribution AreaOfTriangle(ABC)
72 Attribution HeightOfTriangle(ABC)
73 Attribution RatioOfSimilarTriangle(ABC)
74 Attribution RatioOfMirrorSimilarTriangle(ABC)
75 Attribution PerimeterOfQuadrilateral(ABCD)
76 Attribution AreaOfQuadrilateral(ABCD)
77 Attribution HeightOfQuadrilateral(ABCD)
78 Attribution RatioOfSimilarQuadrilateral(ABCD)
79 Attribution RatioOfMirrorSimilarQuadrilateral(ABCD)
80 Attribution LengthOfArc(OAB)
81 Attribution MeasureOfArc(OAB)
82 Attribution RatioOfSimilarArc(OAB)
83 Attribution RadiusOfCircle(O)
84 Attribution DiameterOfCircle(O)
85 Attribution PerimeterOfCircle(O)
86 Attribution AreaOfCircle(O)
87 Attribution PerimeterOfSector(OAB)
88 Attribution AreaOfSector(OAB)

B Consistency theory of formal system

A formal system is an abstraction of the real world that simplifies and clarifies
problems or concepts by removing certain details and complexities. Its primary
objective is to provide a precise, consistent, and reliable method for studying and
solving problems while eliminating ambiguity and uncertainty. By formalizing
problems, we can apply mathematical, logical, and computational methods to
address a wide range of real-world issues.

In the real world, a concept c, which could represent anything, the properties
of things, relationships between things, etc., can be represented by a symbol s(c)

within the formal system. A single concept may have multiple symbol represen-
tations within the formal system, denoted as the set Rc. The rules governing
the conversion of concepts in the real world are represented as various rules in
formal system, denoted as

r−→. These rules define relationships and operations
between symbols, determining the methods of inference and computation.

When designing a formal system, it is essential to ensure the consistency of

static representations. For any symbol representation s
(c)
i of a concept c, there

should exist an operation multi to obtain the symbol set Rc, as shown in Eq. 18.
The mapping between c and Rc should be a reversible mapping, as indicated in
Eq. 19.

multi(s
(c)
i) = Rc, s

(c)
i ∈ Rc (18)

36 X. Zhang et al.

f(c) = Rc, f
−1(Rc) = c (19)

Additionally, the design of a formal system should ensure the consistency of
dynamic processes. For any rule

r−→ designed to govern the conversion of concepts
ca and cb in the real world, it should satisfy the condition that, for any symbol

representation s
(ca)
i of ca, the application of

r−→ results in and can only yield the

symbol representation s
(cb)
j of cb.

ca
r−→ cb (20)

s
(ca)
i

r−→ s
(cb)
j , s

(ca)
i ∈ Rca , s

(cb)
j ∈ Rcb (21)

C Topological mapping method

When we utilize topological mapping method to transform the TSI of a diagram
into a formal representation, we can define the fundamental transformations of
the diagram as operations on its TSI formal representation.

The formal representation of the TSI of a geometric diagram is denoted as
(p1, p2, . . . , pn). Clockwise rotation of the diagram can be defined as moving
the first point in the sequence to the end of the sequence, as shown in Eq. 22.
Reflection can be defined as reversing the order of the sequence, as shown in
Eq. 23. Translation, shearing, and scaling do not alter the TSI of the diagram,
as shown in Eq. 24.

rotate((p1, p2, . . . , pn)) = (p2, . . . , pn, p1) (22)

reflect((p1, p2, . . . , pn)) = (pn, pn−1, . . . , p1) (23)

linear((p1, p2, . . . , pn)) = (p1, p2, . . . , pn) (24)

D Topological construction method

The operation ⊕ defined by Eq. 1 and Eq. 2 is meaningful only when two shapes
are non-overlapping simple closed shapes and when the two shapes share adjacent
edges (the number of common points > 2).

The formal representation of composite diagrams, along with ⊕, forms a
semigroup, satisfying closure, commutative law and associative law. The formal
representation of composite diagrams is defined as the collection of the formal
representations of all its constituent shapes, so closure is evidently satisfied. Next,
we will prove that the operation ⊕ satisfies commutative law and associative law.

If diagram C is composed of diagrams A and B, their formal representations
of TSI are represented as sets Ra, Rb, and Rc, respectively. Diagram A, B, C

FormalGeo 37

contains m, n, o points, respectively. There are x (x ≥ 2)common points shared
between A and B and y (y ≥ 2)common points shared between B and C. The
formal representations of their TSI can be represented as Eq. 25, Eq. 26 and
Eq. 27.

Pa = (p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , . . . , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l) (25)

Pb =(p
(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , . . . , p

(a,b)
i ,

p(b)s2 , . . . , p
(b)
s3 , p

(b,c)
j , . . . , p

(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m)

(26)

Pc = (p
(c)
1 , . . . , p(c)s1 , p

(b,c)
j+y , . . . , p

(b,c)
j , p(c)s2 , . . . , p

(c)
n) (27)

We shall begin by proving the commutative law. As demonstrated in Eq. 28

and Eq. 29, Pa⊗Pb = rotate(i)(Pb⊗Pa), where i = |{p(b)1 , . . . , p
(b)
s1 , p

(a,b)
i+x , p

(a)
s2 , . . . , p

(a)
l }|.

Then the commutative law can be demonstrated by Eq. 30.

Pa ⊗ Pb

=(p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , . . . ,

p
(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m , p

(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l)

(28)

Pb ⊗ Pa

=(p
(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l , p

(a)
1 , . . . ,

p(a)s1 , p
(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , . . . , p

(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m)

(29)

Ra ⊕Rb

={rotate(i)(Pa ⊗ Pb)|i = 1, 2, . . . , l +m− 2x+ 2}
={rotate(i)(Pb ⊗ Pa)|i = 1, 2, . . . , l +m− 2x+ 2}
=Rb ⊕Ra

(30)

Next, we proceed to prove the associative law. As demonstrated in Eq. 31
and Eq. 32, (Pa ⊗ Pb)⊗ Pc = Pa ⊗ (Pb ⊗ Pc), where Then the commutative law
can be demonstrated by Eq. 33.

(Pa ⊗ Pb)⊗ Pc

=(p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , . . . ,

p
(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m , p

(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l)

⊗ (p
(c)
1 , . . . , p(c)s1 , p

(b,c)
j+y , . . . , p

(b,c)
j , p(c)s2 , . . . , p

(c)
n)

=(p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , p(c)s2 , . . . , p

(c)
n , p

(c)
1 , . . . ,

p(c)s1 , p
(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m , p

(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l)

(31)

38 X. Zhang et al.

Pa ⊗ (Pb ⊗ Pc)

=(p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , . . . , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l)

⊗ (p
(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , . . . , p

(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , p(c)s2 , . . . ,

p(c)n , p
(c)
1 , . . . , p(c)s1 , p

(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m)

=(p
(a)
1 , . . . , p(a)s1 , p

(a,b)
i , p(b)s2 , . . . , p

(b)
s3 , p

(b,c)
j , p(c)s2 , . . . , p

(c)
n , p

(c)
1 , . . . ,

p(c)s1 , p
(b,c)
j+y , p

(b)
s4 , . . . , p

(b)
m , p

(b)
1 , . . . , p(b)s1 , p

(a,b)
i+x , p(a)s2 , . . . , p

(a)
l)

(32)

(Ra ⊕Rb)⊕Rc

={rotate(i)((Pa ⊗ Pb)⊗ Pc)|i = 1, 2, . . . , l +m+ n− 2x− 2y + 4}
={rotate(i)(Pa ⊗ (Pb ⊗ Pc))|i = 1, 2, . . . , l +m+ n− 2x− 2y + 4}
=Ra ⊕ (Rb ⊕Rc)

(33)

The aforementioned properties enable us to construct diagrams from any two
simple components of a composite diagram without considering the order of con-
struction. This laws makes the TCM an order-independent diagram construction
method. When formalizing problems and implementing TCM, we no longer need
to be concerned about the order of construction statements.

We have implemented TCM in FGPS, and the algorithm description can be
found in Alg. 1, where the multi function extends a single TSI formal represen-
tation of a diagram to the set of all formal representations, as defined in Eq. 2,
and the combine function is used to achieve the combination representation of
two simple diagrams, as defined in Eq. 1.

The computational cost of the algorithm per iteration is shown in Tab. 10,
where n represents the number of simple closed diagrams that make up the
complex diagram. For the complex diagram, it takes at most n−1 combinations
of simple figures to obtain the complex diagram. The number of combined di-
agrams generated after each iteration depends on the number of edges in the
simple diagrams. For example, when n triangles are combined, the number of
quadrilaterals obtained is approximately 3n/2, denoted as ki · n.

Table 10. Time Complexity Analysis of the implemented TCM.

iteration len(Units) len(Combs) combination times len(NewCombs)

1 n n n · n k1 · n
2 n k1 · n n · k1 · n k2 · n
.

n− 1 n kn−2 · n n · kn−2 · n 0

The time complexity of the implemented TCM is given by Eq. 34.

FormalGeo 39

n2 + k1n
2 + · · ·+ kn−2n

2 = (1 + k1 + · · ·+ kn−2)n
2 ≈ O(n3) (34)

Algorithm 1 Topological construction method

Input: Units: list, TSI of simple diagrams that make up combined diagram.
Output: Results: list, constructed TSI of combined diagram.
Units← multi(Units)
Combs← Units
Results← Combs
while len(Combs) > 0 do

Initialize an list NewCombs
for i = 1 to len(Units) do

unit← Units[i]
for j = 1 to len(Combs) do

comb← Combs[j]
new comb← combine(unit, comb)
if new comb is not None and new comb is not in Results then

new combs← multi(new comb)
for k = 1 to len(new combs) do

add new combs[k] to NewCombs
add new combs[k] to Results

end for
end if

end for
end for
Combs← NewCombs

end while

E Geometry predicate logic

The GPL operation & is, in fact, a more general form of operation ⊕. ⊕ requires
that the two geometric relations involved in the operation are formalized TSI,
and the result has a fixed form. & is not limited to the same type of geometric
relations and can even operate across different types of relations, such as geo-
metric and quantitative relations. The result of the operation is a set of point
variables, which can be combined into specific structures as needed. In addition,
GPL has introduced the | and ∼ to enhance its expressive power.

For the & operation, when the second relation is a quantitative relation, it is
denoted as R1&RA. The operation is only meaningful when the point variables
of RA are a subset of those in R1. As for the | operation, it is only meaningful
when the two relations involved have the same point variable structure. The
& operation satisfies commutative law and associative law, while the combined
operation of & and | satisfies the distributive law.

40 X. Zhang et al.

R1(v
(1)
1 , v

(1)
2 , . . . , v

(1)
l) (35)

R2(v
(2)
1 , v

(2)
2 , . . . , v(2)m) (36)

R3(v
(3)
1 , v

(3)
2 , . . . , v(3)n) (37)

There are 3 relations as shown in Eq. 35, Eq. 36 and Eq. 37. In the subse-
quent proof process, for the sake of clarity, we temporarily omit the operation
of removing duplicate variables, as defined in Eq. 4.

R1&R2

={(r1i , r2j)|(r1i , r2j) ∈ R1 ×R2, r
1
i (v) = r2j (v), v ∈ V1 ∩ V2}

={(r2j , r1i)|(r2j , r1i) ∈ R2 ×R1, r
1
i (v) = r2j (v), v ∈ V1 ∩ V2}

=R2&R1

(38)

(R1&R2)&R3

={(r1i , r2j , r3k)|(r1i , r2j , r3k) ∈ (R1 ×R2)×R3, r
1
i (v) = r2j (v), v ∈ V1 ∩ V2,

r1i (u) = r3k(u), u ∈ V1 ∩ V3, r
2
j (w) = r3k(w), w ∈ V2 ∩ V3}

={(r1i , r2j , r3k)|(r1i , r2j , r3k) ∈ R1 × (R2 ×R3), r
1
i (v) = r2j (v), v ∈ V1 ∩ V2,

r1i (u) = r3k(u), u ∈ V1 ∩ V3, r
2
j (w) = r3k(w), w ∈ V2 ∩ V3}

=R1&(R2&R3)

(39)

R1&(R2|R3)

={(r1i , r2j)|(r1i , r2j) ∈ R1 × (R2 ∪R3), r
1
i (v) = r2j (v), v ∈ V1 ∩ (V2 ∪ V3)}

={(r1i , r2j)|(r1i , r2j) ∈ R1 ×R2, r
1
i (v) = r2j (v), v ∈ V1 ∩ V2}

∪ {(r1i , r2j)|(r1i , r2j) ∈ R1 ×R3, r
1
i (v) = r2j (v), v ∈ V1 ∩ V3}

=(R1&R2)|(R1&R3)

(40)

The proof of ommutative law, associative law and distributive law can be
found in Eq. 38, Eq. 39 and Eq. 40. We utilize the laws of the Cartesian product
× to prove the laws of the &. The elements of the relation R are treated as un-
ordered sets. Therefore, (r1i , r

2
j) and (r2j , r

1
i) are considered equivalent in Eq. 38.

As mentioned earlier, | is meaningful only when the two relations involved have
the same point variable structure. Hence, in Eq. 40, we have V2 = V3 = V2 ∪ V3.
The aforementioned laws allow us to simplify GPL statements before their exe-
cution, speeding up the process.

F FGPS

The structure of FGPS can be divided into five main components: Main Logic
Control, Core Solving Engine, Formal Language Parser, Data Loader, and AI
Interface. The relationships between these modules are illustrated in Fig. 13.

FormalGeo 41

Engine

Data

GPL Executor

Equation Solver

Problem

Condition

Engine

Data

GPL Executor

Equation Solver

Problem

Condition

Main

Interactive mode

Automatic mode

Search

AI-assisted Search

Automatic mode

Search

AI-assisted Search

Main

Interactive mode

Automatic mode

Search

AI-assisted Search

Parser

CDL Parser

Inverse Parser

GDL Parser

AI Interface

Parser

CDL Parser

Inverse Parser

GDL Parser

AI Interface

Output

Input

Output

Input

Fig. 13. The architecture of FGPS

Main is control module of FGPS, invoking other modules to enable inter-
active problem-solving and automated problem-solving. The automated solving
component implements both forward search and backward search, allowing for
the configuration of various search strategies (breadth-first, depth-first, random,
beam) and defining interfaces for AI-assisted searches.

Engine is the core component of FGPS, responsible for parsing and executing
GPL and consists of two sub-modules, GPL Executor for relational inference and
Equation Solver for algebraic computation.

Parser facilitates bidirectional conversion between formal language and ma-
chine language. It consists of 3 sub-modules. GDL Parser parses GPDL and
GTDL into machine language, enabling custom configuration of the Solver. CDL
Parser parses the formal describing of problems into machine language for sub-
sequent inference. Inverse Parser translates machine language back into formal
language, facilitating the verification and checking of the solution process.

Data preserves all details of the problem-solving process and comprises 2
sub-modules. The Problem module ensures the correctness and consistency of
the problem input conditions, implementing automatic diagram construction,
condition auto-expansion, and validity checks. The Condition module is respon-
sible for data storage.

AI Interface defines the interface for interaction between the AI system
and FGPS. Both the AI Automatic Formalization and the AI Problem Solver
can be seamlessly integrated with FGPS.

Guided by GFT and modular design, FGPS boasts exceptional extensibility
beyond its fundamental features like formal language parsing, GPL execution,
human-readable problem-solving processes, and structured output. By invoking
FGPS’s core modules, we’ve developed both an interactive solver and a search-
based problem solver. Next, we will introduce the forward search algorithm and
the backward search algorithm.

Forward search starts from the known conditions of the problem and contin-
uously apply theorems to derive new conditions until the goal is achieved. The
search process involves the construction of a search tree, with nodes representing
sets of known conditions and edges denoting theorems, as depicted in Fig. 14.
The description of the forward search algorithm is provided in Alg. 2. The func-
tion get expandable() traverses the search tree based on pre-defined strategies
(BFS, DFS, RS and BS) and returns nodes with the EXPANDABLE state. The

42 X. Zhang et al.

Theorem

Node

Expandable

Expanded

Solved

Failed

Expandable

Expanded

Solved

Failed

Super

Node

Node

Theorem

Fig. 14. Forward search Tree (left). Backward search Tree (right).

function apply theorem() applies the theorem associated with the current node
and returns whether the problem solved. The function get theorem seqs() re-
turns a list of theorems applied from the root node to the current node. The
function expand(), guided by the known conditions of the current node, checks
the list of applicable theorems and extends new nodes.

Algorithm 2 Forward search

Input: tree: a tree with the known problem conditions as the root node.
Output: theorem seqs: list of theorem sequence for problem solving.
Initialize an list theorem seqs
node← tree.get expandable()
while node is not None do

solved← node.apply theorem()
if solved then

node.state← SOLVED
theorem seqs← node.get theorem seqs()
break

end if
node.state← EXPANDED
l← node.expand()
if l = 0 then

node.state← FAILED
end if
node← tree.get expandable()

end while

Backward search (BW), on the other hand, begins with the problem-solving
goal, expands it into multiple sub-goals, and repeats this process until all sub-
goals are resolved. The search process involves the construction of a search tree,

FormalGeo 43

with nodes representing subgoals, hypernodes representing sets of subgoals, and
edges representing theorems, as illustrated in Fig. 14. The description of the
backward search algorithm is provided in Alg. 3. The function get expandable()
traverses the search tree based on pre-defined strategies, returning hypernodes
with the EXPANDABLE state. The function node.check() updates the state
of the superNode based on the known problem conditions, while the function
supernode.check() updates its own state based on the states of its nodes. The
function expand() extends the current goal into several subgoals based on the
list of theorems. The function update() propagates the state update from child
nodes to parent nodes, starting from the leaves and progressing up to the root.
The function get theorem seqs() provides a list of theorems applied from the
current node to the root node.

Algorithm 3 Backward search

Input: super tree: a super tree with the problem goal as the root super node.
Output: theorem seqs: list, theorem sequence for problem solving.
Initialize an list theorem seqs
super node← super tree.get expandable()
while super node is not None do

for i = 1 to len(super node.nodes) do
node← super node.nodes[i]
node.check()
if node.state is SOLVED then

continue
else if node.state is FAILED then

break
else

l← node.expand()
if l = 0 then

node.state← FAILED
break

else
node.state← EXPANDED

end if
end if

end for
super node.check()
super tree.update()
if super tree.solved then

theorem seqs← super tree.get theorem seqs()
break

end if
super node← super tree.get expandable()

end while

44 X. Zhang et al.

We conducted experiments on the formalgeo7k. Search time and search step
of different search methods and strategies can be found in Tab. 11.

Table 11. Experimental Results

metric group method strategy
data

total l1 l2 l3 l4 l5 l6

time

solved

FW BFS 185.05 121.97 205.51 333.33 331.26 243.92 251.11
FW DFS 132.35 84.11 158.91 254.29 196.02 230.39 218.05
FW RS 92.21 57.38 89.55 177.34 189.74 166.96 199.31
FW BS 58.76 35.11 81.52 106.97 207.55 191.40 121.36
BW BFS 57.67 30.00 94.97 152.26 147.55 193.21 134.65
BW DFS 46.45 26.34 81.17 115.83 94.85 133.23 0.85
BW RS 65.82 42.79 101.71 156.27 145.50 202.37 3.37
BW BS 75.55 47.16 121.17 172.50 165.80 207.28 146.26

unsolved

FW BFS 574.94 435.34 583.68 615.29 624.07 662.96 680.99
FW DFS 548.81 418.77 545.90 594.45 605.73 641.54 655.50
FW RS 542.46 394.49 545.83 591.90 606.38 632.24 649.77
FW BS 355.74 277.24 345.70 358.92 430.08 446.34 451.65
BW BFS 579.24 549.25 572.43 592.65 588.48 596.18 597.49
BW DFS 581.50 550.13 577.12 593.69 592.71 595.34 598.39
BW RS 580.74 554.16 578.65 589.05 588.93 592.29 597.24
BW BS 513.86 339.10 508.03 566.64 574.09 585.96 578.42

step

solved

FW BFS 58.44 21.85 68.67 119.56 144.80 161.44 822.18
FW DFS 87.16 33.15 95.95 225.57 232.25 257.59 727.17
FW RS 41.89 19.14 47.63 64.32 108.26 143.41 611.00
FW BS 18.64 10.99 25.97 37.86 46.19 48.44 541.00
BW BFS 15.14 20.68 4.80 5.60 2.31 1.00 1.00
BW DFS 5.17 4.96 5.83 5.86 3.94 1.00 1.00
BW RS 4.34 5.02 3.13 2.81 1.27 1.00 1.00
BW BS 1.67 1.49 1.94 3.08 1.25 1.00 1.00

unsolved

FW BFS 63.65 45.66 61.73 76.33 77.90 56.90 65.42
FW DFS 154.25 89.57 148.09 154.30 152.47 205.00 376.90
FW RS 66.38 65.22 68.86 75.37 56.18 62.72 62.72
FW BS 37.44 27.72 36.11 41.85 42.56 40.07 54.67
BW BFS 266.77 1148.76 195.45 21.53 10.16 4.49 59.20
BW DFS 517.90 2656.32 154.26 6.99 2.18 1.62 17.20
BW RS 181.74 830.49 113.67 15.27 2.14 1.34 10.16
BW BS 7.17 22.11 6.84 3.03 2.48 1.73 2.01

	 FormalGeo: An Extensible Formalized Framework For Olympiad Geometric Problem Solving

