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Abstract: Automatic geometric problem-solving is an active and challenging subfield at
the intersection of AI and mathematics, where geometric problem parsing plays a critical
role. It involves converting geometric diagram and text into certain formal language.
Due to the complexity of geometric shapes and the diversity of geometric relationships,
geometric problem parsing demands that the parser exhibit cross-modal comprehension
and reasoning capabilities. In this paper, we propose an enhanced geometric problem
parsing method called FGeo-Parser, which converts problem diagrams and text into the
formal language of the FormalGeo. It also supports reverse formalization to generate
human-like solutions, reflecting the symmetry between parsing and generating. Specifically,
diagram parser leverages the BLIP to generate the construction CDL and image CDL,
while text parser employs the T5 to produce the text CDL and goal CDL where these
neural networks are both based on a symmetric encoder–decoder architecture. With
the assistance of a theorem predictor, these CDLs were automatically parsed and step-
by-step reasoning was executed within FGPS. Finally, the reasoning process was input
into a solution generator, which subsequently produced a human-like solution process.
Additionally, we re-annotated problem diagrams and text based on the FormalGeo7K
dataset. The formalization experiments on the new dataset achieved a match accuracy of
91.51% and a perfect accuracy of 56.47%, while the combination with the theorem predictor
achieved a problem-solving accuracy of 63.45%.

Keywords: geometric problem autoformalization; geometry problem-solving; FormalGeo7K
dataset; cross-modal

1. Introduction
Geometric problem-solving requires a system capable of multimodal fusion, dia-

grammatic reasoning, relational operations, logical reasoning, and algebraic computation,
making it a long-standing challenge [1–3] that has drawn significant attention from both
the artificial intelligence and mathematics communities. Geometric problem parsing is
a critical first step in geometric problem-solving. It transforms the problem description
and geometric diagrams into a formal representation that machines can understand and
process, forming the foundation for subsequent problem-solving. A typical geometric
problem consists of a geometric diagram and a textual problem description. A geometric
problem-solving system must first parse the known conditions and the goals from both

Symmetry 2025, 17, 8 https://doi.org/10.3390/sym17010008

https://doi.org/10.3390/sym17010008
https://doi.org/10.3390/sym17010008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0009-0000-2513-7060
https://orcid.org/0000-0002-5678-7485
https://orcid.org/0000-0002-9728-1114
https://orcid.org/0000-0002-2921-3291
https://doi.org/10.3390/sym17010008
https://www.mdpi.com/article/10.3390/sym17010008?type=check_update&version=2


Symmetry 2025, 17, 8 2 of 17

the textual description and the diagram to enable subsequent reasoning and computation,
as shown in Figure 1.

Traditional methods, such as search-based methods [4,5], algebraic methods [6–8],
and point elimination methods [9], require manual preliminary formalization of geo-
metric problems, with the solving process involving numerous manually defined rules.
The development of deep learning technologies has introduced new avenues for geometric
problem-solving. Recent works predominantly construct neuro-symbolic systems to ad-
dress these challenges, which can be categorized into Deductive Database methods [10–12]
and Program Sequence Generation methods [13–15]. Deductive Database methods parse
the problem’s textual description and diagram into a formal language and subsequently
solve the problem through logical reasoning. In contrast, Program Sequence Generation
methods encode the problem text and diagram to create a joint problem representation, in-
put this encoding into a decoder, and generate a program sequence, which is then executed
by a program executor.
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Figure 1. The architecture of automated geometry problem-solving on FGPS with FGeo-Parser
and Hyper-GNet.

However, existing methods have limitations that hinder the problem-solving success
rate of neuro-symbolic systems and the difficulty of geometric problems they can address.
The first issue is that small-scale datasets and incomplete annotations prevent data-driven
neural networks from fully acquiring geometric knowledge, making it difficult to gen-
eralize to problems outside the dataset and to higher difficulty problems, such as those
at the IMO level. To address the first issue, we refined the FormalGeo7K [16] dataset by
correcting annotation errors, standardizing the description style of geometric problems,
and supplementing missing English and Chinese problem descriptions, resulting in the
FormalGeo7K-v2 dataset. We also used GeoGebra to recreate the geometric problem dia-
grams, exporting them in both PNG and GGB formats. Furthermore, we designed a data
augmentation method tailored to the principles of FormalGeo, which doubles problem
samples and expands the training set to 14,700 samples, and the problem text is rewritten
using LLMs, applying a similar twofold augmentation. Importantly, we adopted an online
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data augmentation approach, ensuring that the training set generated in each epoch is
different, thereby greatly increasing the dataset’s diversity.

The second issue is that existing methods focus on applying deep learning to geometric
problem-solving but neglect problem representation. Most studies adopt symbolic systems
from NGS [13] or Inter-GPS [10]. NGS [13] uses a multimodal model to predict solutions
but cannot produce human-readable ones and has limited representation. Inter-GPS [10]
has a formal system yet has difficulty expanding and lacks error-checking and backtracking.
To address this, we developed FormalGeo, a consistent geometry formal system based
on formalization theory [17]. It defines the system with formal language, separating
definitions from solver code for the easy addition of predicates and theorems. It converts
texts and diagrams into a unified formal language like first-order predicate logic for good
readability and computer processing. For geometric problem-solving aspects, it integrates
them within a predicate logic framework. The solving process forms a hypergraph, which
can be reverse-formalized into a human-like solution, reflecting semantic–syntactic and
bidirectional mapping symmetries.

The third issue is that existing methods, such as FGeo-DRL [11] and FGeo-TP [18],
rely on manual annotations to convert geometric problems into formal descriptions. Sub-
sequently, geometric problem-solvers take these formal descriptions as input and output
a formalized solution process. Although these methods achieve relatively high problem-
solving success rates on the FormalGeo7K dataset, the formalization process requires
substantial human effort, highlighting the need for research into geometric problem auto-
formalization. To address the third issue, we developed FGeo-Parser, an automatic parser
for geometric problems. Starting with problem diagrams and text as input, the diagram
parser outputs the construction CDL and image CDL, while the text parser outputs the text
CDL and goal CDL. Together, these components form a geometric problem represented in
formal language. The diagram parser is implemented based on the BLIP model, while the
text parser is implemented using the T5 model. These neural networks are both based on a
symmetric encoder–decoder architecture. With the assistance of a predictor, FGPS solves
the problem, and the rule-based generator converts the solution process into human-like
solutions. The overall architecture is illustrated in Figure 1.

Our contributions are as follows:

1. We enhanced the FormalGeo7K dataset to create FormalGeo7K-v2, expanding the
problem count to 7000, standardizing the problem presentation style, and correcting
several annotation errors. Additionally, we used GeoGebra to relabel high-quality
geometric diagrams that include detailed positional information for geometric ele-
ments such as points and lines, making them suitable for various types of diagram
parsing tasks.

2. We built FGeo-Parser, an automatic parser for geometric problems, which can auto-
matically convert a geometric diagram and text into a unified formal statement. It
is divided into the diagram parser and the text parser. The diagram parser, based
on the BLIP model, converts the problem diagram into construction CDL and image
CDL, while the text parser, built on the T5 model, transforms problem text into text
CDL and goal CDL. These CDLs provide a comprehensive formal representation of a
geometric problem.

3. We developed a comprehensive framework for automatic geometric problem-solving.
Given the input of raw geometric diagram and text, the framework produces a human-
readable and interpretable solution process. Specifically, FGeo-Parser is employed to
convert the geometric problem into formal language, followed by theorem sequence
prediction using HyperGNet within FGPS. Finally, a rule-based solution generator is
designed to output a human-like solution process.
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4. We conducted comparative and ablation experiments on the FormalGeo7K-v2 dataset
for two tasks: geometric problem parsing and geometric problem-solving. FGeo-
Parser achieved a match accuracy of 91.51% and a perfect score of 56.47%. The neuro-
symbolic solver obtained an overall problem-solving success rate of 63.45%. The exper-
imental results demonstrate the effectiveness of the FGeo-Parser and neuro-symbolic
solver proposed in this paper.

2. Related Works
2.1. Traditional Methods

The Geometry Theorem Prover [4] uses a backward search via the following steps: Start
from problem goals, then decompose into sub-goals by rules until only known conditions
are left. Vice versa, the forward chaining method [5] starts from knowns and expands till
the goal is reached. Deductive Database methods [19], a data-based search type, boosts
forward chaining via a structured database for efficiency. However, these search-based
methods demand a substantial degree of manual rule and problem description definition;
they are also time-consuming and may restrict scalability and applicability for various
geometric problems.

The Wu method [6] turns geometric problems into an equation system with algebraic
equalities and inequalities, making the solution similar to that of algebraic equations. Its
appearance has propelled geometric problem-solving research, spawning methods like
Gröbner bases [7], numerical parallel [20], polynomial system triangulation elimination [21],
and dimensionality reduction [22]. Essentially, algebraic methods use computer power.
But they cannot produce human-readable proof processes.

The introduction of point elimination methods [9] based on geometric invariants
has advanced research into mechanical solutions for geometric problems. This method
uses a constructive language to describe geometric problems, with the solution process
embedded in the construction steps. Point elimination methods can produce human-like
problem-solving processes and have facilitated the development of practical tools such as
Geometry Explorer [23] and Java Geometry Expert [24]. The principles of point elimination
methods can be readily extended to solid geometry [25] and non-Euclidean geometry [26].
However, these methods require substantial effort to discover new invariants and define
point elimination rules, which limits the types of geometric problems they can represent
and solve.

Since the 21st century, with tech and theory advances, some scholars aimed to build
systems for auto-parsing and solving geometric problems. The GEOS [27] models the under-
standing task as optimization, creating a system combining text and diagram interpretation.
It parses text and diagram into logical expressions and solves by checking satisfiability.
GeoShader [28] focuses on shaded area problems, building an analysis hypergraph. Be-
sides problem-solving, theorem proving [29,30], formalization [31,32], and knowledge
extraction [33] have also received significant attention. But these methods rely on manual
rules and human annotations, limiting problem types and generalization.

2.2. Modern Methods

With the advancement of deep learning technologies, several data-driven automatic
problem-solving systems capable of learning from examples have been proposed. Re-
cent works mostly constructed neuro-symbolic systems to solve geometric problems,
which can be divided into Deductive Database methods [10–12] and Program Sequence
Generation methods [13–15].

Deductive Database methods transform problem text and diagrams into formal lan-
guage for logical reasoning. Inter-GPS [10] automatically converts them into formal lan-
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guage via text parsing and object detection. A symbolic solver reasons stepwise with a
theorem predicator. GeoDRL [34] is a self-learning framework integrating logic graph
deduction and deep reinforcement learning for geometry reasoning as a Markov deci-
sion process. AlphaGeometry [12] uses a neural language model trained on synthetic
data to guide a symbolic deduction engine in IMO geometry problems. FGeo-TP [18]
employs a language model to predict theorem sequence, improving heuristic search. FGeo-
DRL [11] combines deep reinforcement learning with the FormalGeo system to obtain
human-readable solutions for geometric problems.

Program Sequence Generation methods encode problem text and diagrams for joint
encoding, and then input them into a decoder to generate a program sequence executed by
a program executor. NGS [13] parses a multimodal geometry problem’s info and generates
interpretable programs with self-supervised tasks. S2G [35] maps the solving process to
interpretable operation trees. Geoformer [36] tackles calculation and proving via sequence
generation. DPE [37] encodes long/medium text. A symbolic character-aware model [38]
tokenizes symbolic characters for better understanding. Dual-GeoSolver [15] simulates
human dual-reasoning. PGPSNet [14] combines pre-training, augmentation, and decoding
for geometric reasoning. GOLD [39] processes symbols and primitives to extract relations,
converting them to natural language for LLM-based solving. Zeng et al. [40] developed
software using LSTM and ResNet101 for encoding and self-attention for multimodal fusion
and knowledge extraction.

In addition to geometric problem-solving tasks, other related geometric problems
have also garnered the attention of researchers. PGDPNet [41] is an end-to-end model
for geometry diagram parsing. It consists of two components: an instance segmentation
model to extract geometric primitives, and a graph neural network to parse geometric
relationships and classify primitives. Murphy et al. [42] introduced a neuro-symbolic
framework for autoformalizing Euclidean geometry, which combines domain knowledge,
SMT solvers, and large language models. Zhang et al. [43] evaluated the performance of 10
large language models and multimodal models in solving geometric problems.

3. FormalGeo7K Datasets
Several datasets of geometry problems have emerged, including Geometry3K [10],

GeoQA [13], PGDP5K [44], etc. However, there are still some notable issues: (1) limited scale
or absence of annotations for certain modalities; (2) low annotation quality, which hampers
the training of neural networks; and (3) a lack of formal theoretical support. To address
these challenges, we built a large-scale plane geometry problem dataset, FormalGeo7K,
which contains 7000 plane geometry problems, covering difficulty levels from grades 6 to
12. Each problem is accompanied by fine-grained diagrams, natural language texts, formal
language annotations, and theorem sequence annotations based on the FormalGeo [45].

3.1. Collection and Description

The FormalGeo7K dataset is sourced from the Geometry3K [10] and GeoQA+ [37]
datasets. After removing non-planar geometry and repeated samples, we collected
2848 problems from Geometry3K and 4152 problems from GeoQA+. These problems
are exercises drawn from popular textbooks from grades 6 to 12, covering almost problem
types in plane geometry.

Unlike most existing methods that only address multiple-choice questions requiring
candidate answers, our approach can solve numerical and relational problems to pro-
vide a problem-solving process. Given an initial problem, it can be divided into four
elements, all in human-readable form: problem text t, problem diagram d, solution goal c,
and problem answer a. To support the mechanization of geometry-solving, we developed a
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self-consistent and expandable formal system, FormalGeo [45], which includes 88 predi-
cates and 196 geometric theorems, all in machine-readable form. The problem description
needs to be transformed into conditional declaration language CDL. It includes construc-
tion CDL cdlc, image CDL cdli, text CDL cdlt, and goal CDL cdlg, where cdlc is composed of
the predicates Shape, Collinear, and Cocircular, representing the construction information
of geometric elements and uniquely constructing the geometric diagram. cdli represents the
conditions depicted in the problem diagram; cdlt reflects the conditions expressed in the
problem’s text; and cdlg defines the problem-solving goal. The problem-solving process is
represented as theorem sequences ss, where the goal is gradually derived from the premises.
The entire process is fully interpretable. Thus, a problem can be represented as (t, d, cdlc,
cdli, cdlt, cdlg, a, s). A sample of the dataset can be seen in Figure 2 and our formal system
is described in detail in FormalGeo [17].

Human-like Solution

We have O is the center of circle O (1), DH is perpendicular to GH (2), ∠CFD=48 (3);

Given conditions (1) (2) , by the Perpendicular to Diameter Theorem, we have ⌒OBC=⌒ODB (4);

By the Common Sense, we have ⌒OBC=-⌒ODB+⌒ODC (5);

By the Common Sense, we have arc ODB is similar to arc ODC (6);

…

Given conditions (11) (3) , by calculation, we have ⌒ODC=96 (12);

By the Properties of Triangles (Sum of Interior Angles is 180°), we have ∠ADH=-∠BAD-∠DHG+180 (13);

By the Properties of an Arc (The Opposite Angles are Supplementary), we have ∠ADH=-⌒OAC/2+180 (14);

By the Supplementary Angles Theorem, we have ∠CFA=-∠EFC+180 (15);

Given conditions (2) (4) (5) (7) (8) (9) (10) (12) (13) (14) (15) , by calculation, we have ∠EFC=66 (16);

Problem Text

English: As shown in the diagram, ∠CFD=48°, O is 

the center of ⊙O, the diameter of ⊙O is AB, DH is 

perpendicular to GH. Find the measure of ∠EFC.

Construction CDL

Shape(OAD,DA)

Shape(AD,DG,GO,OA)

Shape(AO,OG,GF,FA)

Shape(OFA,AF)

Shape(GD,DH,HG)

Shape(FG,GH,HC,CF)

ImageCDL

Equal(MeasureOfAngle(CFD),48)

PerpendicularBetweenLine(DH,GH)

TextCDL

Equal(MeasureOfAngle(CFD),48)

IsCentreOfCircle(O,O)

IsDiameterOfCircle(AB,O)

PerpendicularBetweenLine(DH,GH)

Theorem Sequences

circle_property_chord_perpendicular_bisect_arc(1,ODC,OHB)

arc_addition_length(1,ODB,OBC)

similar_arc_judgment_cocircular(1,ODB,ODC)

similar_arc_property_length_ratio(1,ODB,ODC)

similar_arc_property_measure_ratio(1,ODB,ODC)

Shape(OCF,FC)

Shape(OCF,CE,EF)

Shape(BH,HD,ODB)

Shape(CH,HB,OBC)

Collinear(AOGHB)

Collinear(DGF)

Image Annotation (parsed from .gbb)

Points: {A:[919,980], B:[1378,827], C:[919,1103], ..., O:[919,827]}

GoalCDL

Value(MeasureOfAngle(EFC))

Answer

66

Chinese: 如图所示，∠CFD=48°，O是⊙O的圆

心，⊙O的直径为AB，DH垂直于GH。求∠EFC

的大小。

Collinear(AFE)

Collinear(DHC)

Cocircular(O,ADBCF)

arc_property_circumference_angle_external(1,ODB,A)

arc_property_circumference_angle_external(1,OAC,F)

arc_property_circumference_angle_external(1,ODC,F)

triangle_property_angle_sum(1,ADH)

arc_property_circumference_angle_internal(1,OAC,D)

adjacent_complementary_angle(1,EFC,CFA)

Figure 2. An example of annotated geometric problem in FormalGeo7K.

3.2. Annotation

The annotation of the FormalGeo7K dataset involves two phases. The first phase
entails converting 6981 initial problems into our formal language, with further details
outlined in [16]. Due to issues such as missing diagram elements and disorganized text
formats in the collected initial problems, we conducted a second annotation phase. This
phase involved re-annotating the corresponding problem diagram and text based on the
formal language annotations. Additionally, we collected problems from GeoQA+ [37]
to expand the dataset to 7000. For the annotation of diagrams, we utilized the popular
mathematics education website GeoGebra [46], which provides geometric drawing tools
that enabled us to create basic geometric shapes and six types of diagram conditions.
To enhance the diversity of diagram representations, we incorporated some conditions
represented in the text CDL into the image CDL as well. Additionally, by analyzing the GGB
files of the problems in GeoGebra, we extracted the pixel locations of geometric figures and
information about geometric elements. To generate problem text that is consistent with the
formal language, we employed a rule-based method to deformalize the text CDL and goal
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CDL back into problem text. For this annotation, we organized 14 trained master students
and provided them with annotation guidelines. Each annotated problem was reviewed
by the same author, and any unsatisfactory annotations were identified for correction and
re-annotation until they fully met the requirements. More details on the annotations can be
found on the website [47].

3.3. Statistics

The FormalGeo7K dataset consists of 7000 problems, divided into training, validation,
and test sets in a ratio of 0.7:0.15:0.15. Our formal language is based on three main principles:
the ordering principle, the rotation invariance principle, and the counterclockwise principle.
Therefore, the CDL of each problem can have multiple representations that comply with
these principles. This allowed us to perform data augmentation on the CDL. Similarly, we
applied random augmentation on the problem text to enhance its robustness. Each problem
was expanded to create two variations, allowing the training set to reach 14,700 samples.
Notably, we opted for online data augmentation, meaning that the augmented training
set was randomly regenerated for each epoch, thereby increasing the diversity of the
training data.

Moreover, the difficulty of automatically formalizing geometry problems using neural
networks is closely related to the complexity of the diagrams and the number of problem
conditions. We roughly categorized the difficulty levels of formalizing problems in the
dataset based on the number of sub-statements in the CDL. All annotated and augmented
geometric problems underwent interactive verification using the FGPS [16]. As shown in
Figure 3, the difficulty of formalizing problems in FormalGeo7K generally follows a normal
distribution, with the majority of problems containing between 10 and 20 sub-statements.
Furthermore, the difficulty of formalizing problems is approximately proportional to their
problem-solving difficulty. Problems with more complex diagrams and more conditions are
likely to have a higher difficulty level. This reflects a balanced difficulty distribution within
FormalGeo7K, which is beneficial for evaluating the performance of different models.
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Figure 3. Difficulty distribution of the problem formalization in the FormalGeo7K.

4. FGeo-Parser
FGPS [16] can solve problems formulated in formal language through manual annota-

tions, and with the assistance of a theorem predictor, it can achieve automated problem-
solving. To fully automate geometric problem-solving, we also introduced a method termed
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FGeo-Parser to facilitate the conversion between human language and machine language.
The FGeo-Parser we proposed takes the diagram and text of problem as input. After pro-
cessing through the diagram parser and text parser, it converts them into construction
CDL, image CDL, text CDL, and goal CDL, which together constitute a geometric problem
representation in formalized language. After being solved by FGPS with the assistance of
a predictor, the deformalizer translates the solution process into human-readable natural
language. The complete architecture is depicted in Figure 1.

4.1. Diagram Parser

The diagram contains geometric construction information along with supplementary
textual conditions. Previous works [10,27,41] often involve complicated procedures or
intricate models. In our work, we treat diagram parsing as image caption task and introduce
an enhanced method that efficiently extracts diagram features and swiftly converts them
into the corresponding formalized languages, specifically construction CDL and image
CDL, which can be directly input into the FGPS.

The diagram parser is composed of a diagram encoder and a text decoder. We propose
an enhanced method based on the BLIP [48], which is a vision language pre-training
framework that offers greater generalization for downstream tasks. The diagram encoder
utilizes a Vision Transformer (ViT) [49] that segments the image into patches and encodes
them into an embedding sequence. Compared to traditional graph neural networks [50],
the ViT is capable of capturing more global information. The text decoder inserts cross-
attention (CA) between the feed-forward network (FFN) layer and the self-attention (SA)
layer in each Transformer block to incorporate diagram information [51]. Furthermore,
the bidirectional self-attention (Bi-SA) layer is replaced with a causal self-attention (Causal
SA) [52] layer to accommodate text-generation tasks. The architecture of the diagram parser
is demonstrated in Figure 4.

Feed Forward

Self Attention

Feed Forward

Cross Attention

Bi Self-Att

LM

Construction CDL

&

Image CDL

Diagram

Encoder

Text

Decoder

Figure 4. The architecture of diagram parser.

Additionally, we proposed a tokenization method called GeoTokenizer, which is
tailored to fit our formal language. The vocabulary comprises all predicates and their
sub-words from the formal system, along with all letters, commonly used symbols, and
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several special tokens. We employed a Byte Pair Encoding (BPE) [53] approach to tokenize
the formal language, converting it into a vector sequence.

We fine-tuned the pre-trained models using the online augmented dataset and the
validation set. The fine-tuned models were then evaluated on the test set to assess the pre-
diction results. During the fine-tuning process, cross-entropy loss was used for optimization
to refine the generated outputs.

LCE = − 1
N

N

∑
i=1

C

∑
c=1

yi,c log ŷi,c (1)

LCE refers to cross-entropy loss [54], where N is the total number of samples, C is the
total number of classes, yi,c represents the true label indicating whether the i-th sample
belongs to class c (with a value of 1 if true, otherwise 0), and ŷi,c represents the predicted
probability that the i-th sample belongs to class c. Additionally, cosine annealing learning
rate scheduling [55] was used during the training process.

LR(t) = LRmin +
1
2
(LRmax − LRmin)

(
1 + cos

(
tπ
T

))
(2)

Here, LR(t) is the learning rate at time step; LRmin and LRmax are the minimum and
maximum learning rates, respectively; t represents the current epoch; and T is the total
number of epochs. The cosine function varies the learning rate smoothly between LRmin

and LRmax over the training process. This approach enables the model to converge quickly
during the early stages of prolonged training while reducing the learning rate in the later
stages to prevent model oscillation.

4.2. Text Parser

The text parser is responsible for parsing the conditions and goals from the problem
text. Some rule-based methods [10] struggle to handle the diversity of problem descriptions,
leading to the omission of critical problem-solving information. With the support of a
large-scale dataset, we employed the text-to-text unified framework of the T5 model [56]
to transform the word sequences of the problem text into text CDL and goal CDL. For the
input of the problem text, we used the T5Tokenizer to match the model, while the formal
language output was tokenized using GeoTokenizer, consistent with the diagram parser.

Additionally, to enhance the diversity of text descriptions and reduce the impact of
noise on the model, we applied an augmented training set during training, which was
generated by an LLM through random rewrites of the original problem text [57] in the
FormalGeo7K. Similar to the diagram parser, the text parser was also optimized using
a cross-entropy loss function. The entire algorithm flow for image and text parsing is
presented in Algorithm 1.

4.3. Solution Generator

To accomplish fully human-readable automated geometric problem-solving, after the
parser converts the problem text and diagram into formal language readable by the FGPS
and the problem is solved through theorem prediction, it is still necessary to deformalize
the machine’s solution process back into natural language. Our deformalizer uses the
hyper-tree generated by the FGPS after successfully solving the problem as a reference.
The root node represents the initial problem conditions, the intermediate nodes correspond
to conditions during the solving process, and the leaf nodes represent the problem’s
goal, with the hyper-edges corresponding to the applied theorems. Ultimately, we used
topological sorting to obtain the solution path from the initial conditions to the goal, and a
rule-based method to convert the formal language into natural language.
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Algorithm 1 FGeo-Parser.
Input: probem: problem text and problem diagram.
Output: parsed_cdl: parsed problem cdl.

Initialize text_parser.
Initialize diagram_parser.
Initialize parsed_cdl as empty list.
if probem.text is not None then

text_cdl ← text_parser.parse_text_cdl()
goal_cdl ← text_parser.parse_goal_cdl()

end if
if probem.diagram is not None then

image_cdl ← diagram_parser.parse_image_cdl()
cons_cdl ← diagram_parser.parse_cons_cdl()

end if
Conduct a syntax check on all cdl and add it into parsed_cdl.

5. Experiments
5.1. Experimental Settings

Dataset and Implementation Details: We conducted experiments on the Formal-
Geo7K dataset, which included the deduplicated and fine-grained annotated Geometry3K
and GeoQA+. The FormalGeo7K dataset was divided into 4700 training samples, 1050
validation samples, and 1050 test samples. Our experiments were implemented using
PyTorch on an RTX 4090. In the diagram parser, the diagram encoder used a Vi-T, the pro-
cessing problem diagrams were resized to 512 × 512, the text decoder employed a modified
Transformer, and the text parser was the T5 model. To increase dataset diversity, we applied
a rule-based augmentation to the formal language and LLM rewriting to the problem text
during training, expanding the training set to 14,700 samples. The loss function was the
cross-entropy loss, and the optimizer was Adam. We set the initial learning rate to 1× 10−5,
using cosine annealing learning rate scheduling to decay it to 5 × 10−6. And the batch size
was configured to 4, with a max epoch of 30.

Comparison Methods: To evaluate our FGeo-Parser, we performed two types of
comparative experiments: Geometry Formal Language Parsing and FormalGeo System
Problem-Solving. Given the unique formal language of the FGPS, we only compared it with
several neural network models. Additionally, we evaluated problem-solving success rates
under our solver system against current methods, including NGS [13] and DFE-GPS [57].

Evaluation Metrics: We evaluated these methods on two levels. The first level uses
three metrics to assess the quality of the generated formal geometry language: BLEU-4 [58],
match accuracy, and perfect accuracy. At the second level, the parsed CDL is input into the
FGPS, combined with HyperGNet [59] to solve the problems in a fully automated process
without human intervention. The final evaluation metric is problem-solving accuracy.

5.2. Geometry Formal Language Generation

Given the uniqueness of our formal language, we treated the task as a text-generation
problem. Applying neural network methods for its solution, we assessed several pre-
trained models for their accuracy in formal language generation. Ultimately, we selected
the ResNet-LSTM model and the BLIP model as the diagram parser, and the T5 model as
the text parser. As the diagram encoder, ResNet [50] effectively captured image features,
which were then decoded into formal language by the LSTM [60]. In contrast, BLIP [48]
employed a pre-trained ViT-BERT architecture, which provides superior generalization
capabilities for specific downstream tasks. BLIP-14M refers to the model pre-trained on 14
million diagrams, while BLIP-129M refers to the model pre-trained on 129 million diagrams.
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Different scales of ViT were employed, with ViT-B containing 12 Transformer blocks and
ViT-L containing 24 Transformer blocks. Additionally, the T5 model [56] performed well in
seq2seq tasks. The T5-base model has 220 million parameters, while the T5-large model
has 770 million parameters.

We utilized the problem text and images as input, with CDL as output, to train various
models using the training set, and fine-tuned them with the validation set. The final
experimental results on the test set are presented in Table 1. We evaluated the model
performance by BLEU-4, match accuracy, and perfect accuracy. In order to ensure that
the formal language was correctly recognized by FGPS, we split each problem’s CDL into
several sub-statements. Match accuracy represents the ratio of correct sub-statements to
the total number of sub-statements, while perfect accuracy indicates the proportion of
problems where all sub-statements are correct relative to the total number of problems,
with a sub-statement considered correct as long as it conforms to the FGPS principles. Since
image CDL and text CDL both represent problem conditions and have a certain degree of
overlap, we merged the results of the diagram parser and text parser before calculating
match accuracy and perfect accuracy.

Table 1. Comparison of match accuracy and perfect accuracy on different formalization methods.

Method BLEU-4 (%) Match (%) Perfect (%)

ResNet-LSTM + T5-base 87.40 62.63 11.52
BLIPViT-B-14M + T5-base 88.00 84.99 43.14

BLIPViT-B-129M + T5-base 91.40 91.31 56.19
BLIPViT-L-129M + T5-base 90.40 91.51 56.47

According to the experimental results in the Table 1, we can observe that the BLIP
model significantly outperformed ResNet-LSTM overall. This difference arises because the
max length of the sequence was set to 450 tokens, which limited LSTM’s capacity to capture
long-term dependencies, leading to a decline in generation quality. Although the BLEU-4
score remained acceptable, accurately generating formal language with multiple principles
poses a substantial challenge that requires high precision. Also, the decoder of BLIP is based
on a Transformer and is well suited to handling long-sequence tasks, which offers improved
generalization for downstream tasks with extensive pre-training. Experimental results
indicate that the BLIP model pre-trained on 129 million images outperforms the one pre-
trained on 14 million images, with a 6.3% improvement in match accuracy and a 13.1% gain
in perfect accuracy. This demonstrates that larger pre-training datasets can significantly
amplify the model’s capabilities, particularly in generating formal language. Furthermore,
increasing the scale of the diagram encoder cannot yield a noticeable improvement in
evaluation metrics, possibly due to the limited number of challenging problems in the
dataset. Overall, FGeo-Parser can generally parse medium and lower-difficulty problems,
but there remains substantial room for improvement in tackling more challenging problems.

5.3. Formalgeo System Problem-Solving

Our method serves as a bridge between human and machine reasoning, and it is
essential to verify its ability to solve geometric problems. The ultimate goal is to achieve
fully automated problem-solving, where the input is the original problem text and diagram,
and the output is a natural language solution process. We integrated the FGeo-Parser and
theorem predictor Hyper-GNet within FGPS for problem-solving, using problem-solving
success accuracy as the evaluation metric. Additionally, we compared our approach with
advanced methods such as NGS [13] and DFE-GPS [57]. Table 2 presents the success
accuracy of each method on our FormalGeo7K dataset.
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Table 2. Comparison of problem-solving accuracy on different methods.

Method Acc (%)

NGS 30.49
DFE-GPS 64.76

Ours 63.45
Ours(gt) 85.53

Experimental results demonstrate that our method achieves a problem-solving ac-
curacy of 63.45%. The multimodal NGS method achieves an accuracy of only 30.49% on
the FormalGeo7K, which is restricted to solving multiple-choice questions and verifies its
predicted solution programs for correctness. This indicates that FormalGeo7K presents
certain challenges for it. DFE-GPS, leveraging a 9B-parameter LLM, achieves an accuracy
of 64.76% when using text and images as input. However, it should be noted that its
problem-solving accuracy is evaluated using GPT-4o-mini. In contrast, our FGPS matches
the known conditions and obtains conclusions by applying theorems. The whole process is
carried out step by step and is basically similar to the way humans solve problems, which
has relatively strong interpretability. Moreover, the entire matching process is recorded
in detail in the system, providing detailed operations for each step, which are traceable.
When using the ground truth of text and diagram CDL as input, the solving accuracy
reaches 85.53%, indicating substantial room for improvement in our parser to achieve
higher-quality formal language generation.

5.4. Ablation Study and Discussion

In this section, we conduct four types of ablation experiments to analyze FGeo-Parser’s
performance under various conditions. First, we examine the capability of the diagram
parser and text parser to generate their respective CDLs by selecting the best-performing
model from the second subsection. This model is tested on the test dataset for its match and
perfect accuracy in generating different types of CDLs. As shown in Table 3, the text parser
significantly outperforms the diagram parser, suggesting that seq2seq tasks are simpler than
image2text tasks, as the latter involves cross-modal alignment and places higher demands
on the model’s ability to align image and text spaces accurately. Furthermore, in diagram
parsing, construction CDL primarily require general spatial information, whereas image
CDL necessitate a more precise, integrated understanding of spatial and semantic content,
resulting in higher parsing accuracy for construction CDL compared to image CDL.

Table 3. The match accuracy and perfect accuracy of different types of CDLs.

Method CDL Type Match (%) Perfect (%)

Diagram Parser
Cons 86.99 61.23
Image 77.48 55.61

Cons + Image 83.04 40.10

Text Parser
Text 96.49 86.48
Goal 96.75 96.38

Text + Goal 96.60 86.29

Secondly, we analyzed the CDL generation quality by the model across different
difficulty levels, where difficulty is defined based on the number of sub-statements in the
CDL where match accuracy and perfect accuracy are used as evaluation metrics. From
Figure 5, it is evident that accuracy decreases gradually as difficulty increases. In high-
difficulty regions, some lines exhibit significant oscillations, likely due to the smaller
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number of samples in these regions. Overall, the trend supports the feasibility of using the
number of CDL sub-statements as a metric for categorizing difficulty levels.
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Figure 5. The match and perfect accuracy of each level in different CDLs.

Thirdly, to assess the impact of data augmentation on model performance, we con-
ducted ablation experiments. Table 4 presents a comparison of FGeo-Parser’s results on
the FormalGeo7K versus the FormalGeo7K augmented threefold. The augmented dataset
boosted model performance, with match accuracy increasing by 2.9% and perfect accuracy
by about 7.2%. This improvement is attributed to CDL’s inherent flexibility in represen-
tation, where online data augmentation enables the model to fully capture and recognize
these variations.

Table 4. Comparison of FormalGeo7K and data-augmented FormalGeo7K.

Dataset Match (%) Perfect (%)

Formalgeo7k 88.48 49.04
Formalgeo7k (DA) 91.51 56.47

Finally, it is worth discussing FGeo-Parser’s performance comparison on datasets with
different image sizes. Unlike complex real-world scenes, geometric figures are simpler
and more intuitive, so intuitively, image resolution might not significantly impact the
model’s ability to learn image features. However, our comparison between 256 × 256
and 512 × 512 pixel images showed that the latter increased match accuracy by 9.5% and
perfect accuracy by approximately 15.1%, as presented in Table 5. This improvement
may have stemmed from the complexity of formal language, which requires more precise
positional and categorical information, making higher-resolution images beneficial for
model performance.

Table 5. Comparison of different sizes of a problem image.

Image Size Match (%) Perfect (%)

256 81.93 41.14
512 91.51 56.47
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Overall, FGeo-Parser effectively supports FGPS in achieving fully automated problem-
solving, yet it is constrained by the requirement to generate formal language specific to
FGPS. Furthermore, solving problems demands sufficient premise conditions, imposing
strict requirements on the model to accurately generate all problem conditions to support
subsequent prediction and problem-solving. Therefore, in future work, we plan to enhance
FGeo-Parser’s formalization accuracy, particularly when handling more complex geometric
problem representations.

6. Conclusions
In this work, we focus on the automatic formalization of geometric problems and con-

duct a second fine-grained annotation work on problem diagram and text of the large-scale
planar geometry dataset, FormalGeo7K, expanding it to 7000 problems. Additionally, we
propose a neural network method, FGeo-Parser, which can automatically parse problem
diagram and text, converting them into formal language within FGPS to support subse-
quent predictions to solve problems. Furthermore, we employ a deformalizer to convert
the solution process of machine into human-readable natural language. Extensive experi-
ments demonstrate that the FormalGeo7K dataset is challenging, and FGeo-Parser exhibits
great formalization capabilities, which enables fully automated solutions with promising
performance. In the future, we will conduct research on models that can obtain formal
languages with higher precision since a high requirement for fully grasping the conditions
of problems is essential for successfully solving them. Additionally, we plan to develop
new formal systems to respond more flexibly to geometric problems of higher difficulty.
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