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Abstract: Human-like automatic deductive reasoning has always been one of the most challenging
open problems in the interdisciplinary field of mathematics and artificial intelligence. This paper
is the third in a series of our works. We built a neural-symbolic system, named FGeo-DRL, to
automatically perform human-like geometric deductive reasoning. The neural part is an AI agent
based on deep reinforcement learning, capable of autonomously learning problem-solving methods
from the feedback of a formalized environment, without the need for human supervision. It leverages
a pre-trained natural language model to establish a policy network for theorem selection and employ
Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning
environment based on geometry formalization theory and FormalGeo, which models geometric
problem solving (GPS) as a Markov Decision Process (MDP). In the formal symbolic system, the
symmetry of plane geometric transformations ensures the uniqueness of geometric problems when
converted into states. Finally, the known conditions and objectives of the problem form the state
space, while the set of theorems forms the action space. Leveraging FGeo-DRL, we have achieved
readable and verifiable automated solutions to geometric problems. Experiments conducted on the
formalgeo7k dataset have achieved a problem-solving success rate of 86.40%.

Keywords: formal mathematics; geometric problem solving; automatic reasoning; reinforcement
learning; Monte Carlo Tree Search

1. Introduction

The rapid development of large language models signifies a new potential for machine
intelligence in addressing geometric problems. The emergence of ChatGPT has significantly
enhanced the ability to effectively solve geometric problems by enabling machines to delve
deeper into the understanding of human language [1]. This innovation has paved the
way for the application of artificial intelligence in the field of mathematics. Through
the language model’s comprehension and analysis of geometric problems [2], users can
obtain more intuitive and insightful explanations, along with targeted suggestions, such as
selecting appropriate geometric principles or proof methods.

However, it is important to note that, despite the positive role played by large language
models in the initial resolution of geometric problems, they are not mathematical experts.
The advice they provide should be regarded as inspirational guidance rather than absolute
and precise theorem proofs [3]. When dealing with more complex and formal geometric
proofs, reliance on professional mathematical knowledge and tools, such as mathematical
software and theorem provers, is still necessary.

Nevertheless, exclusive reliance on language models for geometric reasoning casts
doubts on the interpretability of theorem application and the feasibility of its execution [4].
The opacity of neural networks obscures our understanding of how they process input
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problems. Furthermore, the absence of precise metrics for evaluating executable sequences
hinders the verification of complete problem resolution through the output theorem se-
quences. Since logical natural language processing requires step-by-step derivation based
on human understanding, directly deducing the solvability of geometric problems via
natural language model reasoning remains an elusive goal [5,6].

To address the aforementioned issues, we propose a geometric formal language system
called FormalGeo. By transforming natural language and graphical information into a
universally machine-processable formal language, we ensure that the formal language
remains consistent before and after geometric transformations such as mirroring and
rotation, due to the inherent symmetry of geometric shapes. Our formalization system
effectively addresses this concern. Subsequently, we have successfully integrated multiple
existing geometric datasets, including Geometry3k [2], GeoQA [7], GeoQA+ [8], and online
resources. For these dataset resources, Geometry3k, while comprehensive, is relatively
small and may not provide enough variety for large model training. GeoQA and GeoQA+
offer a multimodal approach, but they may fall short in interpretability and verifiability
when compared to formal systems. To enhance data quality, we conducted processes such
as manual annotation, deduplication, and correction, comprehensively optimizing the
dataset. Ultimately, we successfully annotated approximately 6981 problems, creating
a novel geometric dataset named FormalGeo7k [9]; the dataset can be obtained here:
https://github.com/BitSecret/FGPS, (accessed on 2 April 2024.).

Due to the extensive need for annotated datasets in training natural language mod-
els, the limited dataset annotated through our formal language system is insufficient for
complete theorem prediction using natural language models. Our study introduces a novel
solution named FGeo-DRL. This system integrates a neural-symbolic framework, which au-
tonomously learns problem-solving strategies for geometric problems without the need for
human intervention, thereby significantly surpassing traditional methods. By combining
the adaptive learning capability of the AI agent with the structured precision of geometric
formal systems, FGeo-DRL not only manages the complexity of geometric reasoning but
also adopts an innovative approach by integrating deep reinforcement learning and Monte
Carlo Tree Search techniques into geometric reasoning. Simultaneously, reinforcement
learning often requires defining a suitable reward function for guidance. In the case of
immediate rewards, manually defining them is subjective and faces challenges in dealing
with almost infinite state spaces. On the other hand, learning rewards through inverse
reinforcement learning requires extensive annotated data and presents interpretability
issues [10,11]. We adopt delayed rewards to handle the reward feedback generated during
the search. The use of Monte Carlo Tree Search allows us to obtain a search trajectory
chain, and the reward value is fed back based on whether the problem is ultimately solved.
The search process is guided by the magnitude of rewards generated through multiple
simulations [12]. A preprint of this work has also been published and is available for
consultation at https://arxiv.org/abs/2402.09051 (accessed on 2 April 2024) [13].

Symmetry plays a crucial role in geometric reasoning, influencing both the under-
standing and solving of geometric problems. The concept of symmetry, especially in plane
geometry, encompasses various transformations such as reflections, rotations, and transla-
tions, which preserve certain properties of geometric figures. The integration of symmetry
within the FGeo-DRL framework can enhance the system’s ability to recognize and apply
symmetric properties and transformations effectively. This can lead to a more robust and
intuitive understanding of geometric problems, often reducing the complexity of problem
solving by identifying congruent or similar shapes and leveraging symmetrical properties.

In summary, our contributions can be categorized into the following three points:

• We integrated existing well-known datasets and added additional problems beyond
those in the field, constructing a larger dataset for geometric problem solving. This
dataset comprises a total of 6981 manually annotated and solved geometric problems.

• We established a geometric formal language system (FormalGeo) that guides the
transformation of natural language into formal language. Concurrently, we built a

https://github.com/BitSecret/FGPS
https://arxiv.org/abs/2402.09051
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geometric problem solver (FGPS) to validate annotated theorem sequences. By anno-
tating the original image and text information of problems into a form understandable
by the geometric formal language system, we can input the theorem sequences for val-
idation. This not only ensures the correctness of proofs but also achieves interpretable
step-by-step deduction.

• We introduced reinforcement learning, specifically employing a Monte Carlo Tree
Search, into geometric automated reasoning. This is executed by conducting heuristic
searches in a geometric reasoning environment built upon the FormalGeo system to
address the limited annotated data issue.

2. Related Work
2.1. Datasets for Geometry Problems Solving

In the early research on geometric theorem proving [14–16], efforts such as those
based on symbolic systems like GeoS [17] or Inter-GPS aimed to construct formal language
systems. These systems, by building solvers, enabled formal language to prove geometric
propositions through logical deduction. However, with the rise of large language models,
more recent work, including GeoQA and UniGeo, began treating problems and diagrams
as multimodal inputs, generating solution sequences through large models. Although these
methods exhibit high generality, they fall short in terms of interpretability and verifiability
compared to symbol-based reasoning in formal systems. Past formal systems, designed
manually for logical languages, faced limitations in broader application scenarios, resulting
in relatively small datasets, such as GeoS with 186 questions and Geometry3k dataset
which used by Inter-GPS containing approximately 3002 problems. These datasets appear
relatively small when considered in the context of large models relying on extensive corpora.
To address this issue, we integrated multiple publicly available geometric problem datasets.
Due to the inconsistency in their formats, we manually reannotated them, including
Geometry3k, GeoQA, and GeoQA+. Ultimately, we introduced a large-scale public dataset
named FormalGeo7k, comprising around 6981 planar geometry problems. Our work is
dedicated to addressing the heterogeneity in data sources to create a more unified and
comprehensive dataset. This integration process aims to enhance data consistency and
comparability, providing a more robust and comprehensive foundation for our research.
This approach allows us to more effectively explore and analyze key features and patterns
in geometric data.

2.2. Reinforcement Learning for Geometry Problems Solving

In recent years, numerous studies have demonstrated the application of reinforcement
learning in the reasoning process. In [18], Monte Carlo simulation was employed for math-
ematical theorem proving, while deep reinforcement learning was utilized for interactive
theorem proving [19] and solving math word problems [20,21]. However, there has been
limited exploration of applying reinforcement learning to geometric theorem proving. The
most recent work involves using deep reinforcement learning to address geometric prob-
lems [22]. In our study, considering the challenges in defining a reward function, we adopt
the Monte Carlo method for interactive search. We replace the immediate rewards obtained
through the reward function with delayed rewards acquired through the completion of a
full round of interactions. The reward is determined by the success of theorem solving in
the Monte Carlo Tree Search process [23], akin to the approach used in AlphaGo [12]. This
modification allows us to use reward feedback to shorten the length of theorem sequences,
ultimately achieving an optimal sequence.

3. Geometry Formal System

In the process of solving geometric problems, mathematical formal systems play a
crucial role, facilitating the transformation from information accessible to humans to the
formal language comprehensible by machines. Particularly, when solving problems using
artificial intelligence, formal systems become pivotal. Simultaneously, the combination of
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manual annotation and formal systems ensures consistency between the description of
geometric problems and the dataset format, eliminating confounding factors for assessing
the performance of artificial intelligence models. However, the answers generated by
artificial intelligence models need reliable validation. Considering that traditional manual
verification methods are both inefficient and error-prone, we have established a geometric
problem solver on the basis of FormalGeo to verify answers [9].

3.1. Geometry Formal Language

The incorporation of a geometric formal system empowers computers with the ca-
pability to comprehend geometric problems, with formal language serving as the bridge
between humans and machines. Within the geometric formal system, the formal language
consists of Geometric Definition Language (GDL) and Conditional Declaration Language
(CDL). As illustrated in Figure 1, CDL is utilized for describing textual and graphical
information. GDL, on the other hand, is composed of Predicate Definition Language
and Theorem Definition Language. Thus, formal language functions as a bridge between
humans and machines.

Figure 1. Formal language for geometry problems. (The letters A to E in parentheses represent points
in the geometric figure).

Predicate Definition Language: Predicate Definition Language is employed to de-
scribe the direct geometric relationships and attributes among entities. It encompasses
predicates that describe the structural aspects of geometric figures. Through structural
predicates, one can articulate general relationships, such as coplanarity, shape, and collinear-
ity. These structural predicates can further extend to basic entities like lines, angles, arcs,
polygons, circles, and more. In addition to structural predicates, custom predicates can be
utilized to automatically expand into other customized relationships. Examples include
geometric relationships of custom shapes like right-angled triangles, trapezoids, as well as
algebraic relationships.

Theorem Definition Language: It is comprised of premises and conclusions, with
geometric relationships and attributes serving as premises, and conclusions being extended
under the judgment rules of the theorem.

The geometric formal system that we have constructed, FormalGeo, includes 88
predicates and 196 theorems. This system can represent, validate, and solve geometric
problems ranging from SAT to IMO levels.

Ultimately, we can model the theorem-solving sequence as a hyper-tree. By con-
tinuously applying theorems to evaluate and integrate nodes in the tree, new nodes are
generated. If the generated nodes align with the final state, it indicates successful problem
solving [24].
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3.2. FormalGeo7k Dataset

Through the defined formal language, we integrated previously widely used public
geometric datasets and online resources. Following formal rules, we annotated the datasets
by declaring both graphical and textual information using the formal language. In addition
to the problem information, we manually annotated theorem sequences based on the
problem information, as illustrated in Figure 1. These sequences were then validated using
FGPS to ensure correctness and consistency between the annotated theorem sequences and
the declared problem information. Throughout the creation process of the FormalGeo7k
dataset, we invested a total of 13 weeks, with the collaborative effort of 16 graduate students
completing the annotation work. In total, we annotated 6981 problems.

The statistics collected from FormalGeo7k cover various types of problems, including
geometric problems related to angle, length, perimeter, area, and other aspects. We catego-
rize the difficulty levels of problems based on the lengths of theorem sequences, measured
from L1 to L6. Here, L1 represents theorem sequence lengths within L2, L2 corresponds
to lengths from 3 to 4, L3 encompasses lengths from 5 to 6, L4 covers lengths from 7 to 8,
L5 includes lengths from 9 to 10, and L6 denotes lengths exceeding 10. Refer to Table 1
for details. In the table, the rows represent the problem types in the FormalGeo7k dataset,
while the columns represent the difficulty levels of the problems in the dataset.

Table 1. Distribution of the FormalGeo7k Dataset.

Category
Number

Total L1 L2 L3 L4 L5 L6

Total 6981 2407 1898 1247 824 313 292
Angle 3523 1246 1160 535 378 127 77
Length 2553 918 512 545 321 116 141

Area 366 106 96 67 44 17 36
Perimeter 305 22 81 74 56 41 31

Other 234 115 49 26 25 12 7

4. Reasoner
4.1. Environment

Our environment is modeled using a formalized system. In this formalized system, the
process of applying theorems is abstracted into the generation of a hyper-tree. Each initial
condition or condition derived through theorem deduction serves as a node. Multiple
nodes are connected through the application of theorems, generating a new condition. If a
node generated by a theorem is already the needed final answer, the problem solving is
considered to be successful. The theorem process from the initial state to the terminating
state can be represented using a theorem sequence.

In the environment used for reinforcement learning, since a natural language model is
employed for initial guidance, all initial problem conditions are treated as the starting state.
Conditions derived from the application of theorems are combined to create the subsequent
state for the reasoning process. The process is considered successful when theorems are
continuously applied, ultimately leading to the achievement of the goal state.

Reward: In this environment, the rewards obtained from applying theorems cannot be
quantified. Therefore, we set the reinforcement learning reward to be solely determined by
the endpoint. In the context of geometric reasoning, we define St as the state representing
the conditions and extensible information possessed by the current problem, at as the
theorems that can be executed in the current state, and g as the goal of the problem. If the
problem is solvable, there exists a theorem sequence to answer it. Thus, when a theorem
successfully resolves the problem, i.e., executing the theorem at from the current state St
leads to the goal state g, a reward value of 1 is assigned. For other cases, such as timeouts,
non-executability of the theorem, or reaching the maximum step limit in the reasoning
sequence, the reward is set to 0. If the solution sequence for a geometric problem is too
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long, then the search space during exploration will grow exponentially. Therefore, in the
process of limited step length simulation searches, problems often require a certain number
of simulations before they can be successfully solved. During the exploration process of
solving the problem, if the reward value for failure is set to −1, it tends to exclude the
theorems that should be selected in later explorations. Therefore, when the reward value is
set to 0, it more significantly focuses the learning on the sequences that successfully solve
the problem.

Reward =

{
1, St

at⇒ g
0, otherwise

(1)

Action Space: We have set the number of theorems in the theorem library to 196. These
theorems can be expanded as needed by adding new ones to the library. By applying
theorems, we can deduce new conditions based on known conditions. However, due to
the strict requirements for constructing diagrams, various scenarios need to be considered.
For example, in determining the congruence of two triangles, if two sets of angles are
known to be equal, then the proof can be established as long as one set of corresponding
sides is equal. Each side has a strict definition in the diagram construction; therefore,
this theorem needs to be expanded into three branches to form three new theorems, each
corresponding to different sides. Therefore, for the 196 theorems in the theorem library, if
there is no ambiguity between the theorem and the diagram, no expansion is necessary, and
it is assumed there is only one branch by default. If there is ambiguity, branch expansion
is performed. Ultimately, we can obtain 234 executable theorems, meaning there are
234 possible actions for each state node.

4.2. Guidance

For a mathematical problem being addressed, there are 234 executable actions available
from any particular state. Consequently, if solving a geometric problem necessitates
a long sequence of theorems, the search space that needs to be explored will expand
exponentially. Furthermore, more complex problems often require the construction of
intricate diagrams, thereby increasing the time needed to apply theorems to these detailed
diagrams. This expansion in time is clearly unsuitable for the search process. In the context
of random search, extensive exploration is required to closely estimate the true probability
distribution of the problem. If the exploration phase consumes too much time, it could lead
to unpredictable impacts on the experiments. Therefore, there is a pressing need to apply
empirical knowledge to guide theorem application.

We pre-trained a lightweight Transformer network model, DistilBERT, with the aim
of achieving prediction performance close to that of BERT while minimizing predic-
tion time [25,26]. To accomplish this prediction goal, we processed a dataset containing
6981 problems. By applying annotated theorem sequences in the environment, we obtained
the state of each node. The states, along with the executed theorems, were saved to the
experience pool as Exp(st, at, Gt). We then utilized a policy network to learn and predict
the theorem selection for the current state.

4.3. Monte Carlo Tree Search

Due to the data volume falling significantly short of what is required for language
model training, relying solely on the policy network for theorem application is insufficient.
We need to employ a policy network within the search process, where its inclusion substan-
tially reduces the search space. Through Monte Carlo Tree Search, data collected during
the exploration phase can be utilized for training the policy network, with the primary
aim being to use the cumulative rewards obtained from actual exploration to inform the
learning of the reinforcement learning policy network. The reinforcement learning network
we use is initialized with parameters consistent with those of the policy network. As our
learning objective is the probability distribution of theorems, the reinforcement learning
network employs policy gradient learning during the training phase [27]. By leveraging
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the cumulative reward feedback R(τ) obtained from Monte Carlo Tree Search [12,23], we
can further reinforce the probability of making correct theorem selections. Algorithm 1
demonstrates how Monte Carlo Tree Search performs trajectory prediction. Our goal is to
find parameters theta that maximize the objective function R(τ), that is, to find a policy that
maximizes E(R(τ)), where τ represents a trajectory from the initial state to the terminal
state, R(τ) is the cumulative reward garnered along this trajectory, and E(R(τ)) represents
the expected cumulative reward over the multiple trajectories collected. Please refer to
Equation (2) for details, where πθ represents the theorem selection strategy. In order to
prevent overfitting of the policy network, we utilize the policy network obtained through
supervised learning as our theorem predictor during the simulation phase. The param-
eters of this predictor remain consistent with the previous generation of reinforcement
learning policy networks. In the theorem selection and expansion stages, we employ the
latest reinforcement learning strategy for theorem selection [28]. Refer to Figure 2 for the
specific model.

J(πθ) = max
θ

Eτ∼πθ
[R(τ)] (2)

Algorithm 1 Agent Trajectory Prediction

1: s← env.init()
2: if not env.solved() then
3: action_probs← RL_PN(s)
4: env.cur_node.edges← Normalize(action_probs, env.legal_actions)
5: repeat
6: a← UCB(env.cur_node.edges) ▷ Choose the action with the highest score
7: s

′ ← env.step(a)
8: until a not in env.visited_edges ▷ Select the action has been visited.
9: env.visited_edges← a ▷ Expand the action has not been visited

ω(s
′
, a) = 0

10: for ( doi = 0; i < simulation_num; i ++)
11: while step in simulation_steps do ▷ Simulate the expansion action.
12: if s

′ → g then
13: ω(s

′
, a)+ = 1

14: break
15: end if
16: a

′ ← Sample(SL_PN(s
′
)

17: s
′′ ← env.step(a

′
)

18: end while
19: end for

ω(s
′
, a) = ω(s

′
, a)/simulation_num

20: env.backward(ω(s
′
, a)) ▷ Backward

21: end if

To maximize the cumulative reward, we need to optimize the path policy to enable
it to select the strategy with the maximum cumulative reward. We use policy gradient to
update the policy parameters:

∇θ J(πθ) = Eτ∼πθ

[
T

∑
t=0
∇θ logπθ(at|st)R(τ)

]
(3)

θk+1 = θk + α∇θ J(πθ) (4)
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Figure 2. The overall architecture of the FGeo-DRL model framework. (The arrow between the
Agent module and the Solution module represents the final problem-solving path obtained through
the Agent).

To implement Monte Carlo Tree Search, we need to define relevant nodes and edges.
Node S is described as composed of all the condition information under the current state,
while an edge is described as an executable theorem in the action space. The node informa-
tion includes the number of visits N(s, a) for each node–action pair, the prior probability
P(s, a), and the cumulative reward Gt obtained by executing the corresponding action
at that node [29]. In the Monte Carlo Tree Search, we can divide it into the following
four stages:

Selection: From the root node, we need to choose an optimal action at to execute,
and the selection of the optimal action is determined by the Upper Confidence Bound
(UCB) [30]. One part of UCB depends on the average reward obtained from exploration
guided by the prior probability, i.e., the average reward obtained from exploration guided
by the prior probability. The other part depends on the actual number of explorations
selected during exploration. This is mainly to make the exploration more comprehensive,
avoiding the drawback of continuously executing actions with high prior probabilities.

at = arg max
a

(Gt + c

√
log ∑T

i=0N(st, ai)

N(st, at)
) (5)

Expansion: For the action selected during the selection phase, the state node resulting
from its execution is expanded. This expansion involves using the policy network to predict
selectable theorems and leveraging prior probabilities to provide selection preferences.
Subsequently, an unexpanded action at is added to the tree, creating a new node st+1
by executing action at. The goal of this phase is to further explore the selected node by
simulating the outcome of the game and initialize statistical information for the newly
expanded node.

Simulation: During the simulation phase, it is necessary to simulate the expanded state
node. We set a maximum search step and simulation count, guided by the policy network
to obtain more reliable simulation results within a smaller search space. For the simulation
results, if the target node is reached within the maximum search steps, a reward of 1 is
returned; otherwise, a reward of 0 is returned. Through multiple simulation processes, we
obtain the average score Gt for the expanded node.

Backup: For the reward scores and visit counts obtained during the simulation phase,
we need to conduct backpropagation. Through backpropagation, we feed the simulation
results ω(st, at) back to the search tree to update the cumulative rewards Gt, thereby
influencing future theorem selections.

Gt = R(τ) =
T

∑
t=0

γtrt = ω(st, at) + γGt+1 (6)
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5. Experiments
5.1. Training Method
5.1.1. Policy Network Datasets

In the initial phase of the project, we need to train a policy network for guiding theo-
rem prediction. This involves processing an annotated dataset containing 6981 geometry
problems [9]. We partition this dataset into state–action pairs (st, at) and delve into anno-
tated theorems through a reinforcement learning environment. By referring to the ground
truth answers, we can capture the states st obtained at each step of theorem execution and
the specific theorem applied at. This process not only helps establish the mapping between
problems and actions but also provides crucial information for subsequent learning and
optimization. Finally, we categorized the 6981 questions based on question types and
difficulty levels. We divided them into training, testing, and validation sets in a ratio of
0.7:0.15:0.15, resulting in 20,981, 4470, and 4470 state–action pairs for each set, respectively.
The experimental results on the validation set are presented in Table 2.

Table 2 displays the hit rate performance of the policy network within different ranges.
The term “Range” refers to the number of selectable theorems, while “Hit rate” means that
the theorems are predicted by the policy network based on the current state, sorted by
probability from high to low, and a number of theorems within the range of n are selected. If
the theorem within this range matches the theorem manually annotated in reality, then this
theorem is considered to have hit the solvable theorem sequence. A range of 1 represents the
direct hit rate of the prediction results, while values greater than 1 indicate the probability
of the real labels falling within the range space. As the range expands from 1 to 25, a
significant increase in hit rate can be observed. This method effectively measures the ability
of the policy network to narrow down the search space based on 234 possible theorems
from any given state.

Table 2. The hit rate of the policy network.

Range 1 3 5 10 15 20 25

Hit Rate(%) 49.35 72.89 81.74 89.67 93.21 94.76 95.91

5.1.2. Baseline

In the formalized system, we implemented several search baselines using different
search strategies [9]. We compared forward search (FW) and backward search (BW) to
evaluate distinct search policies [31,32]. In the BW approach, the target node serves as the
initial node, and the search progresses by continuously generating subgoals and solving
them to achieve the overall search objective. FW and BW employ four main strategies,
including breadth-first search (BFS), which searches layer by layer from the initial node.
Depth-first search (DFS) conducts recursive depth-first traversal. Random search (RS)
explores by randomly selecting actions at nodes. Beam search (BS) selects k actions for
execution in the node expansion phase.

For the policy network trained through supervised learning, we will utilize it as the
policy network for reinforcement learning through policy gradient learning. To achieve this,
we conduct Monte Carlo Tree Search on the FormalGeo7k dataset. We set the simulation
phase to 30 simulations with a maximum simulation length of approximately 30 steps.
While the longest theorem sequence in the FormalGeo7k dataset reaches 25 steps, the
majority of theorem sequences are within 10 steps. As the execution of theorems progresses,
the state conditions become increasingly complex, leading to a significant increase in the
execution time of the formalized system. If the simulation step length is set too long, it may
result in a substantial increase in simulation time, severely impacting the efficiency of the
search. Therefore, specific parameters need to be set for searching theorem sequences with
step lengths exceeding 10. Refer to Table 3 for detailed results. In Table 3, the bold text
represents the best results among the Baseline for problems of different difficulty levels. You
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can find detailed information about the baseline at https://github.com/BitSecret/FGPS,
(accessed on 2 April 2024.).

Table 3. Comparison of search accuracy between FGeo-DRL and the baseline.

Method
Success Rates (%)

Total L1 L2 L3 L4 L5 L6

FW-BFS 38.86 59.95 38.62 28.55 17.35 8.63 3.77
FW-DFS 36.16 55.75 40.04 22.94 12.38 7.03 4.11
FW-RS 39.71 59.24 40.04 33.68 16.38 5.43 4.79
FW-BS 25.28 46.12 22.60 13.47 5.83 2.88 0.34

BW-BFS 35.44 67.22 33.72 11.15 6.67 6.07 1.03
BW-DFS 33.73 65.93 30.82 8.90 6.55 5.11 0.68
BW-RS 34.05 66.64 31.66 8.66 5.83 4.47 0.68
BW-BS 34.39 67.10 31.35 9.46 6.31 5.75 1.03

PN 64.40 90.46 70.18 50.93 33.20 17.02 8.05
PN+BS 70.61 95.02 78.95 60.27 34.82 22.34 11.49

FGeo-DRL 86.40 97.65 94.21 85.87 70.45 46.81 32.18
Note: The bold data indicates the best results in the baseline.

5.2. Ablation Study

In this section, we conduct ablation experiments on the FormalGeo7K dataset, consid-
ering three scenarios to explore the impact of different approaches on theorem prediction.

By directly predicting theorem sequences using the policy network, we set the number
of theorems applied in each instance to 1, aiming to explore the direct accuracy of the
policy network. Additionally, we employ a simulated search to showcase the generalization
ability of the policy network to states. At each node in the search tree, we execute the n
most probable theorems as the initial states for the next node. This approach generates a
substantial amount of irrelevant information to serve as a confounding factor. Consequently,
it results in node states that differ from those learned by the policy network. To some extent,
this demonstrates the generalization performance of the policy network.

Assessing the efficiency gained by combining regular search with policy network prun-
ing, where we perform beam search to simulate the impact of policy network pruning [33].

Evaluating the improvement brought by the combination of Monte Carlo Tree Search
and the policy network in FGeo-DRL.

The final experimental results are presented in Table 4 and Figure 3. The “Overall Acc”
represents the success rate of problem solving. In Figure 3, the horizontal axis in the left
graph represents the difficulty level of the questions, while the horizontal axis in the right
graph represents the types of questions.

Regarding the experimental outcomes, it is noticeable that the assistance of Monte
Carlo Tree Search significantly boosts the problem solving success rates from level L1
to L3. A considerable part of this success can be attributed to the sampling feedback
during the simulation phase. For problems with shorter solution sequences, there is
a higher probability of reaching the solution endpoint within a finite number of steps.
Upon reaching the endpoint, reward feedback facilitates the learning of problem-solving
strategies by the policy network. This is particularly evident in dataset problems that
involve area calculation, which, despite their lower quantity, tend to have shorter solution
sequences and thus exhibit noticeably higher resolution rates compared to similar quantity
problems with longer sequences, such as perimeter calculations. For problems with longer
solution sequences, the performance relies more heavily on the policy network within
the limited time. For problems with a greater number of questions regarding angles and
lengths, their numerical advantage allows for an effective transition from short to long
sequences, resulting in marked improvements in these two categories.

https://github.com/BitSecret/FGPS
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Table 4. Ablation study results of FormalGeo7k.

Method Size
Success Rates (%)

Overall Acc (%) Avg Time(s) Avg Steps

PN 1 40.84 0.67 2.35
PN 3 55.15 3.05 3.57
PN 5 63.22 3.59 3.75

PN + BS 3 61.79 3.41 3.26
PN + BS 5 70.61 3.57 3.43

FGeo-DRL / 86.40 / 3.12

Figure 3. Performance of different strategies on the dataset.

5.3. Discussion

In the experimental results, we observed that FGeo-DRL significantly outperforms
the traditional search methods adopted in the baseline and the direct predictions using
large pre-trained language models on the FormalGeo7k dataset in every aspect. As a result,
we reanalyzed the data to investigate the impact of the occurrence of extremes on our
experiment [34]. By presenting the data in Table 3 through a box plot, FGeo-DRL is notably
discernible as an outlier in Figure 4. This variance is particularly marked when addressing
intricate problems at levels L4 to L6, a phenomenon that can be ascribed to several fac-
tors. With the traditional approach, problem solving via random search leaves a choice of
234 theorems per state. The complexity of the problems scales the search space exponen-
tially, thereby precipitously diminishing the success rate with escalating levels of difficulty.
Integrating pre-trained extensive language models has led to a notable amelioration in the
hit rate for theorems, as seen in Table 2. A success rate of 40.84% is attainable without any
form of search by progressively predicting theorems only. The addition of Monte Carlo Tree
Search along with policy gradient learning introduces an expanse of simulated searches
and opportunities for refined retuning, substantially bolstering the deductive reasoning
prowess and the search efficacy of FGeo-DRL in tackling complex problems.

In terms of data efficiency and learning strategies, traditional methods often struggle
with sparse data environments and limited exploration capabilities [16,35]. In contrast,
FGeo-DRL employs reinforcement learning, particularly Monte Carlo Tree Search, which
is an effective approach to tackle the challenges of complex geometric problems. This is
consistent with the observations made by Silver et al. (2016) during the development of
AlphaGo [12], where Monte Carlo Tree Search played a crucial role in improving learning
efficiency and decision depth. Additionally, while the random sampling theorem has been
commonly employed as a solution to geometric problems, its benefit lies in reducing the
time spent on manual annotation [2,22]. However, it may fall short of solving geometric
problems with longer sequences of operations. Manual annotation, despite increasing
labeling pressure, also represents human preference tendencies when confronted with
similar issues to a certain extent. This characteristic enables the inference engine to more
quickly identify breakthroughs in problem solving when faced with comparable scenarios.
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In terms of interpretability, the superiority of FGeo-DRL over past work is apparent.
Contrary to past research that often failed to provide clear reasoning processes [17,36,37],
FGeo-DRL demonstrates good interpretability in geometric problem reasoning. This can be
attributed to the fact that a formal system offers an extensive collection of theorems, along
with the reasoning tree generated through theorem reasoning. FGeo-DRL forms a theorem
sequence, which extends from the initial to the terminal node, through the recording of
theorems selected at each state. Furthermore, FGeo-DRL can generate problem-solving
sequences distinct from those annotated manually. During the deductive reasoning process,
the model offers clear probability scores for each of the 234 theorem activities at the state
node and explores high-probability solutions during the Monte Carlo Tree Search process.
This typically results in diverse solution paths. Under some circumstances, FGeo-DRL can
even identify more succinct paths to problem resolution. For instance, as demonstrated
in Figure 5, FGeo-DRL tends to employ the cosine theorem rather than the Pythagorean
theorem. This method differs from those used in manual annotation and results in a more
streamlined theorem exploration path.

However, despite FGeo-DRL exhibiting strong performance on the FormalGeo7k
dataset, it encounters certain limitations. Specifically, when solving problems of high
difficulty, it requires an increased number of simulations and search steps to produce
satisfactory outcomes, inadvertently lengthening the search duration. Furthermore, it relies
on manually annotated data, including graphical details and problem descriptions, which
provide essential insights and guidance throughout the geometric problem-solving process.
In future work, we plan to tackle this multimodal challenge.

Figure 4. Performance of different methods at various levels.

Figure 5. The discrepancy between manual annotation and FGeo-DRL problem solving in certain
geometric problems.
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6. Conclusions

This paper proposes a theorem sequence prediction model, FGeo-DRL, based on a rein-
forcement learning framework. We implemented a pre-trained natural language model for
search pruning. Additionally, we interacted Monte Carlo Tree Search with a reinforcement
learning environment built through symbolic reasoning systems. By conducting searches
on our proposed geometric problem dataset, FormalGeo7k, we validated the deductive rea-
soning of geometric problems. FGeo-DRL demonstrates superior interpretability, utilizing
guided search and interactive feedback to correct experience networks. It plays a positive
role in exploring both the shortest and novel solutions to geometric problems.
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